
HORIZON 2020 FRAMEWORK PROGRAMME

CloudButton
(grant agreement No 825184)

Serverless Data Analytics Platform

D3.3 Serverless Compute Engine Reference Implementation

Due date of deliverable: 10-06-2022
Actual submission date: 2022

Start date of project: 01-01-2019 Duration: 36 months

Summary of the document

Document Type Report

Dissemination level Public

State v1.0

Number of pages 54

WP/Task related to this document WP3 / T3.1, T3.2, T3.3, T3.4

WP/Task responsible IBM

Leader Gil Vernik (IBM)

Technical Manager Peter Pietzuch (Imperial)

Quality Manager Josep Sampé (URV)

Author(s) Gil Vernik, Josep Sampe, Pedro García, Rut Palmero, Carlos
Segarra, Bo Zhao, Guo Li

Partner(s) Contributing IBM, URV, ATOS

Document ID CloudButton_D3.3_Public.pdf

Abstract This document describes the final architecture design and
the final implementation of the CloudButton platform for
data intensive computations.

Keywords FaaS, serverless, Kubernetes, hybrid cloud, workflow or-
chestration, data intensive computations, SLA monitoring.

History of changes

Version Date Author Summary of changes

0.1 17-05-2022 Gil Vernik (IBM) Table of Contents

0.2 19-05-2022 Roi Sucasas
(Atos)

SLA and monitoring

0.3 22-05-2022 Gil Vernik (IBM) Final design and implementation

0.4 23-05-2022 Carlos Segarra
(IMP), Simon
Shillaker (IMP)

C++, WebAssembly, and Faasm

0.5 30-05-2022 Carlos Segarra
(IMP), Guo Li
(IMP), Bo Zhao
(IMP)

Reivew Faasm text and update Faasm+Lithops inte-
gration

0.6 31-05-2022 Aitor Arjona
(URV), Pedro
García (URV)

Add Triggerflow and Lithops for Apache Airflow sec-
tions

0.7 01-07-2022 Gil Vernik (IBM) Updates and corrections

0.8 02-07-2022 Pierre Sutra
(IMT)

Updates.

1.0 03-07-2022 Gil Vernik (IBM) Final version.

H2020 825184 RIA
03/07/2022 CloudButton

Table of Contents

1 Executive summary 2

2 Motivation and Background 4
2.1 Serverless Computing Overview . 4
2.2 Beyond the Current Serverless Development Experience 5
2.3 Hybrid Cloud . 6
2.4 Performance Acceleration . 7
2.5 Overall Objectives . 7

3 State of the Art 8
3.1 Workflow orchestrates . 8
3.2 Serverless beyond Function as a Service . 9

4 Final design and Implementation of the Serverless Compute Engine for Big Data 10
4.1 Lithops general architecture and design . 10
4.2 No vendor lock-in and multi cloud portability . 12

4.2.1 Multiple APIs . 12
4.2.2 Futures API . 12
4.2.3 Multiprocessing API . 12
4.2.4 Storage API . 14
4.2.5 Storage OS API . 14

4.3 Multiple Storage backends and Big Data processing . 14
4.3.1 Data discovery and data partitioner . 15

4.4 Serverless without limits . 16
4.4.1 Localhost execution mode . 16
4.4.2 Serverless execution mode . 16
4.4.3 Standalone execution mode . 17

4.5 Serverless without constraints and hybrid workloads 17
4.6 LithopsCloud CLI tool . 19
4.7 Temporary data . 19
4.8 CloudObject to share results and maintain state . 19
4.9 Cost effective serverless model for Big Data analytics 20

5 Lithops in the broad scope of CloudButton 21
5.1 Crucial . 21

5.1.1 Overview . 21
5.1.2 Integration with Lithops . 22

5.2 WebAssembly . 23
5.2.1 Format . 23
5.2.2 Linear memory . 24
5.2.3 Toolchains and runtimes . 24
5.2.4 WASI: the WebAssembly system interface . 25
5.2.5 Future WebAssembly development . 25

5.3 C++ - Faasm . 25
5.3.1 Faasm integration with Lithops . 25
5.3.2 Integration with RedHat and Infinispan . 26

6 Serverless Workflows 27
6.1 Triggerflow . 27
6.2 Apache Airflow . 30

i

H2020 825184 RIA
03/07/2022 CloudButton

7 SLA Monitoring and Management 33
7.1 Rational behind the CloudButtonSLA component . 33
7.2 Lithops and CloudButtonSLA integration . 35

7.2.1 Lithops metrics . 35
7.2.2 PromSQL queries . 36
7.2.3 CloudButton agreements and Swagger API . 38
7.2.4 Integration with Lithops through Rabbit queue 40
7.2.5 Prometheus Pushgateway Violation notification 41
7.2.6 A full sample of context . 42
7.2.7 CloudButtonSLA cost control panel in Grafana 46

7.3 Predicted metrics with Prometheus holt_winters and predictor_linear 47

8 Summary, conclusions and the next steps 48
8.1 Applications . 48
8.2 Adoption of the platform by 3rd party developers . 49
8.3 Next steps . 49

ii

H2020 825184 RIA
03/07/2022 CloudButton

List of Abbreviations and Acronyms

ADF Azure Durable Functions

API Application programming interface

ASF Amazon Step Functions

CD Continued Development

CLI Command-line interface

CNCF Cloud Native Computing Foundation

COS Cloud Object Storage

CPU Central Processing Unit

CRC Custom Resource Controller

CRD Custom Resource Definition

DAG Directed Acyclic Graph

DSL Domain Specific Lanaguage

ETL Extract, Transform, Load

FaaS Function as a Service

FDR False Discovery Rate

GPU Graphics Processor Unit

GUI Graphical User Interface

HPSCE High Performance Serverless Compute Engine

HTTP Hypertext Transfer Protocol

ICT Information and Communication Technology

JSON JavaScript Object Notation

K8s Kubernetes

PaaS Platform as a Service

QoS Quality of Service

REST Representational State Transfer

SDK Software Development Kit

SLA Service Layer Agreement

SLO Service Layer Objective

SOTA State of the art

UI User interface

VM Virtual Machine

YAML YAML Ain’t Markup Language

Page 1 of 54

H2020 825184 RIA
03/07/2022 CloudButton

1 Executive summary

Cloud-native transformation is happening in the field of data intensive computations. At the core
of this transformation, there is a microservices architecture with container (e.g., Docker) and con-
tainer orchestrating (e.g., Kubernetes) technologies powering up the microservices approach. One of
the most important recent developments in the cloud-native movement is "serverless" (also known
as Function-as-a-Service (FaaS)) computing. FaaS holds two main promises for data intensive com-
putations: (a) massive just in time parallelism at a fraction of the cost of an always-on sequential
processing and (b) lower barriers for developers who need to focus only on their code and not on the
details of the code deployment.

To fully leverage FaaS potential for the data intensive computations, a simplified consumption
model is required, so that a data scientist, who is not familiar with the cloud computing details in
general and FaaS in particular, could seamlessly leverage FaaS from her program written in a high
level programming language, such as Python.

Nowadays data is not located in one physical place in an enterprise. Rather, data is distributed
over a number of clusters in a private cloud with some data and other resources being in the public
cloud(s). This gives the rise to the architectural approach known as hybrid cloud. In this approach data
and computational resources are federated over a number of clusters/clouds, so that logically they
can be accessed in a uniform and cost-efficient way. The peculiarities of the hybrid cloud should be
transparent to the data scientist who works at the higher level of abstraction, treating the federation
as something that can be accessed and used as a "whole".

Modern intensive data computations take form of complex workflows. Usually, these workflows
are not limited to serverless computations, but include multiple parallel and sequential steps across
the hybrid cloud, where the flow of control is driven through events of different nature. Serverless
computations are ephemeral by nature, but flows require state and complement serverless compu-
tations in this respect. It is paramount that the flows designed by the data scientists allow to glue
together serverless and "serverfull" functionalities. We refer to this model as "servermix".

To support the servermix model cost-efficiently in the hybrid cloud, a number of challenges per-
taining to portability, flexibility, and agility of a servermix computational engine should be solved.

This document describes our progress with the architecture design and the final implementa-
tion of the Serverless Compute Engine for Big Data platform for data intensive computations. The
Serverless Compute Engine platform comprises five main parts:

• Developer Toolkit and APIs: a developer/data scientist facing component (a client environ-
ment) that executes functionality expressed in a high level programming language, such as
Python, transparently leveraging parallelism of serverless as part of the data intensive compu-
tational workflows through submitting jobs to the Serverless Compute Engine;

• Serverless Compute Engine for Big Data: A suite for high performance Compute Engine op-
timized for running massively parallel data intensive computations and orchestrating them as
a part of the stateful data science related workflows. This component includes Lithops core
components, implements scheduling logic, multitenancy, workflow orchestrations, and SLA
management;

• Backend serverless (i.e., FaaS) Framework: this is a pluggable component that can have many
implementations (e.g., public cloud vendor serverless offering, Kubernetes serverless frame-
work, a standalone serverless solution, etc.)

• Persistent Storage Service: this is a pluggable component that is provided independently from
the Serverless Compute Engine plqtform (e.g., Cloud Object Storage (COS))

• Caching Service: this is another independently deployed component providing caching ser-
vices for the Serverless Compute Engine (e.g., Infinispan [1]).

Page 2 of 54

H2020 825184 RIA
03/07/2022 CloudButton

In this specification, we focus on the first two functional components. We start from a brief in-
troduction of the main concepts and programming paradigms involved in our solution in Section 2.
Next we briefly describe SOTA in Section 3 and proceed to laying out the architecture of the Serverless
Compute Engine platform that is based on the Lithops open source framework [2] and also contains
SLA with Monitoring. The architecture follows a cloud-native microservices based approach.

In Section 4 we describe our final design and implementation of the serverless compute engine.
We demonstrate how the public cloud services are leveraged in our architecture. The Lithops frame-
work we developed is an open source project that we released for broad usage and adoption. Lithops
is the main component of Serverless Compute Engine for Big Data and all tasks in WP3 (T3.4, T3.1,
T3.2, T3.3) are using Lithops, like High Performance Serverless Compute Engine that also contains
advanced SLA and monitoring component (will be explained in section 7).

In Section 5 we explain how tools developed in this work package are being widely used by all
partners in the CloudButton project. In particular we explain how Lithops being used in context of
Crucial and Java programming, Shell scripts, WebAssembly and C++ Faasm.

Finally we will explain adoption of the platform by 3rd party developers and provide numerous
applications where Lithops fits with some of the next steps.

Page 3 of 54

H2020 825184 RIA
03/07/2022 CloudButton

2 Motivation and Background

Figure 1: Serverless Taxonomy

2.1 Serverless Computing Overview

The serverless programming model, also known as Function-as-a-Service (FaaS1) has gained consid-
erable momentum since its introduction in 2014 [3]. The term serverless is somewhat misleading.
The term does not imply that no servers are involved in running an application. Rather it hints at
a level of abstraction, which allows to ignore deployment details (e.g., servers configuration and
maintenance) and focus exclusively on the application code. Figure 1 positions FaaS on the spectrum
of programming models. FaaS can be viewed as a specialized Platform-as-a-Service (PaaS) taking
care of all deployment and run-time issues and relieving the developer from any concerns related to
server provisioning and maintenance.

There are several main principles pertaining to FaaS, which are universally applied across a vari-
ety of implementations:

• A unit of execution is a function written in a high-level programming language;

• A function is executed in response to an event (which also can be an HTTP call);

• Rules and triggers can be defined to bind functions and events together, so FaaS is an intrinsi-
cally event driven programming model;

• A customer is charged only for the resources used during the function execution (at a very fine
granularity: typically, being on the order of 100 ms);

• Functions are transparently auto-scaled horizontally to be instantaneously elastic: i.e., the load
balancer is built into a platform and new functions are started in response to events as needed.
Some system limits, such as maximum number of simultaneous invocations per user and invo-
cations/sec per user are usually enforced in FaaS implementations;

• Functions are ephemeral (i.e., stateless)2

1It can be argued that FaaS pertains to delivering serverless computations as a metered and billed cloud service to the
customers. In this document we will use the terms serverless and FaaS interchangeably unless this results in a confusion.

2FaaS extensions, such as AWS Step Functions [4] and Azure Durable Functions [5] allow to maintain state in the
serverless computations. The mechanisms used in these solutions are fairly different. The former implements long running
state machines and the latter uses event scoping.

Page 4 of 54

H2020 825184 RIA
03/07/2022 CloudButton

• Functions can be chained with the output of one action being the input of another;

• Functions can be orchestrated to execute in complex application topologies3

• There is no server administration or provisioning;

• Users typically have to select a function flavor (i.e., amount of memory and CPU – unless allo-
cated proportionally to memory by default) upon the function deployment;

• Functions can execute both synchronously and asynchronously.

Serverless computing is a very attractive choice for big data computations, where data paral-
lelism exists since it offers tremendous potential for ease-of-use, instantaneous scalability and cost
effectiveness providing low cost access to hundreds and thousands of CPUs, on demand, with little
or no setup.

To illustrate this point, consider a geospatial use case of CloudButton. A satellite image object can
be partitioned into sub-images and a separate function can be assigned to process each sub-image
(e.g., apply object classification model on a sub-image). These functions can be run in parallel as a
single map step. For the details of the CloudButton use cases and how they render themselves to
serverless computing see deliverable D2.1 and D3.1.

2.2 Beyond the Current Serverless Development Experience

A basic FaaS development cycle is as follows. A developer writes a function using her favorite text
editor. Then she creates the function (i.e., register it in the platform’s data base) using a CLI or a Web
based GUI. Upon creation the function receives a name, by which it can be bound to event triggers
and rules that cause function invocation in response to the events represented by the triggers.

The reader is referred to IBM Cloud Functions tutorial [11] and Apache OpenWhisk community
resources [12] for a detailed step by step examples of serverless programming with Apache Open-
Whisk, as a typical example of the serverless programming experience

In their inspirational paper [13], the authors observed that even this apparently simple develop-
ment cycle is too complicated for most scientists who prefer focusing on their domain rather than on
mastering a new programming paradigm. This complexity prevents the scientists from leveraging
the advantages of the serverless computing.

Data scientists need a flexible environment where they can run their simulations while not wor-
rying about resources that the simulations may require. While serverless is the right solution to make
e.g., AI flows more efficient — many potential users are unsure of what is involved and required to
make this happen in their scientific applications. Simplifying development experience by provide
data scientists with the "push to the cloud" functionality is the primary goal of the CloudButton
project. To this end, we focus on how to connect an existing code and frameworks to serverless with-
out the painful process of starting from scratch, redesigning applications or learning new skills. Since
serverless computing provides great benefit for HPC workloads (e.g., embarrassingly parallel Monte
Carlo simulations), Big Data analytics and AI frameworks, it is important to make sure that users can
easily integrate serverless with the frameworks and programming languages of their choice.

Furthermore, in the real world big data applications, the applications are rarely a single compu-
tational step, which can be reduced to a serverless function call or a number of calls performed in a
loop (parallelism). Rather than that, typical big data analytics involves multiple steps that should be
coordinated and orchestrated seamlessly. Consuming serverless computations from a cloud (either
centralized or hybrid) is ultimately an exercise in distributed computing. And distributed computing
is notoriously hard. In most cases, it is totally out of the data scientist skills to develop an efficient
and robust code for orchestrating distributed serverless computation.

3The orchestrators are typically external to the FaaS frameworks. Apache Composer [6] is an exception, since it allows
to execute a function composition as it was a function in Apache OpenWhisk. Important examples of the orchestrating
technology include Airflow [7], Kubeflow [8], Argo Flows [9], Fission Workflows [10]. We performed evaluation of some
of these technologies towards their possible use in the CloudButton platform and will discuss some of them later on in this
document.

Page 5 of 54

H2020 825184 RIA
03/07/2022 CloudButton

As a simple example, consider face alignment in facial recognition workloads. The process of
aligning an image is fairly straightforward and can be done using the Dlib library [14] and its face
landmark predictor. Only a few lines of Python code are required to apply the face landmark predic-
tor to preprocess a single image. However, processing millions of images stored in the cloud (e.g., in
the Cloud Object Storage (COS), a massively used cost-efficient storage solution both for structured
and unstructured data), is far from trivial.

To start with, a lot of boilerplate code is required to deal with locating the images inside COS
and accessing them for read and write. Next, there should be code dealing with data partitioning,
function invocations, collection of the results, restarting of failed functions, traffic shaping (i.e., ad-
hering to the system limits, such as functions/sec rate), and informing the next computational stage
in a pipeline about the results of the current one when it finishes. In addition, some external services
might be required to complete different computational tasks and pass information.

This brings the notions of the servermix workflows, workflow orchestration, and their integration
with serverless to the forefront, making them of critical importance for data intensive pipelines4.

In the system we envision, a data scientist develops her code in a high level language such as
Python (as it was before), the code is automatically translated into a DAG of tasks and these tasks
are being executed on a backend FaaS system with all the boilerplate functionality pertaining to the
workflow orchestration executing transparently. The data scientist will be able to provide scheduling
hints to the system specifying the target FaaS service of her choice and SLO pertaining parameters.

2.3 Hybrid Cloud

As some recent studies show [15], enterprises have unique requirements to cloud computing, which
prevents many of the enterprise workloads to be seamlessly moved to the public cloud. As we go to
press, it is estimated that on average only 20% of the enterprise workloads are currently in the cloud,
with 80% still being on premises. For the enterprises the cloud does not mean a traditional centralized
cloud anymore. To start with, even a traditional "centralized" cloud is actually a distributed one with
multiple geographically disparate regions and availability zones and and enterprise data scattered
among them. Moreover, nowadays, most enterprises use multi-cloud strategy for their ICT [16] with
each cloud being distributed. On the private cloud side, even a medium size enterprise has more
than one compute cluster today and more than one storage location and the computations should be
pertained in a distributed manner across these clusters and data silos. The public and private cloud
usage trends culminate in enterprises engaging in the hybrid cloud deployments with multiple multi-
regional public clouds and multi-cluster private cloud federated together in some form allowing
concerted workload execution.

With the hybrid cloud model on the rise, enterprises face a number of non-trivial challenges with
arguably the most compelling one being portability. To allow for portability applications have to be
developed in a certain way known as cloud-native [17], which make them ready for cloud deploy-
ment in the first place (among other features cloud-nativeness implies containerization of the appli-
cation components). Another necessary condition is cloud agnosticism in the control plane related
to supporting the DevOps cycle of the application. To this end, a number of container orchestrator
have been tried by the cloud software development community over the last few years [18, 19, 20]
with CNCF’s Kubernetes (K8s) [20] being a market leader today.

K8s provides PaaS for declarative management of containers. Containerized cloud-native appli-
cations are seamlessly portable across K8s clusters that can also be federated. Thus, K8s becomes a
de-facto standard for the enterprise hybrid PaaS.

In the K8s environment, serverless functions are essentially pods (a unit of scheduling in K8s)
executing containers with potentially multiple containers per pod, where the higher level of abstrac-
tion, which is a "function", is provided by some developer facing shim to insulate the developers
from the low level K8s APIs.

A number of serverless platforms and building blocks as well as K8s native workflow manage-
4We discuss servermix model at length in Deliverable D2.1 in the context of the CloudButton use cases and overall

platform architecture.

Page 6 of 54

H2020 825184 RIA
03/07/2022 CloudButton

ment frameworks have appeared recently. We will briefly review the more important of them in the
next section. In addition, K8s provides mature frameworks for service meshes, monitoring, network-
ing, and federation. An important feature of K8s is its extensibility. Through the Custom Resource
Definition (CRD) and Custom Resource Controller (CRC) mechanisms, K8s can be extended with
additional resources (originally non-K8s) that are added to the control plane and managed by the
K8s API. This mechanism is used by "K8s native" workflow management tools, such as Argo [9] and
Kubeflow [8] to manage complex workflows in a federated K8s environment.

As an intermediate summary, the servermix workflows in the K8s based hybrid cloud boils down
to orchestrating pods. K8s is an event-driven management system and its scheduling mechanism in-
cludes hooks for extension. This is helpful in our approach to developing the CloudButton platform,
because it allows to add smartness to e.g., scheduling decisions taken by K8s w.r.t. pods comprising
a workflow.

2.4 Performance Acceleration

Originally, serverless use cases were focusing on event driven processing. For example, an image is
uploaded to the object storage, an event is generated as a result that automatically invokes serverless
function which generates a thumbnail. As serverless computing become mainstream, more use cases
start benefiting from the serverless programming paradigm. However, current serverless models are
all stateless and do not have any innate caching capabilities to cache frequently access data. In the
CloudButton project, we will explore the benefit of a caching layer and how it can improve server-
less workflows. The data shipping model permeates serverless architectures in public, private, and
hybrid clouds alike and gravely affecting their performance.

Consider a user function that takes input data and applies an ML model, stored in the object
storage. Executing this function at a massive scale as a serverless computation against various data
sets will require each invocation to use the same exact ML model. However, if there no caching
used, each function will have to read the model from the remote storage each time it runs, which
is both expensive and slow. Having a cache layer will enable to store ML model in the cache, as
opposite to each invocation try to get the same model from some shared storage, like object storage.
Metabolomics use case has various level of caching, where they store molecular databases. Likewise,
in the Geospatial pipelines, there are multiple opportunities for improving performance through
caching.

In CloudButton, we plan to explore the tradeoffs between the local per-node cache, such as
Plasma Object Storage (from Apache Arrow) [21] and cluster based caching, such as Infinispan [1],
and develop an architecture that would be able to accommodate the two approaches and balance
between them for cost-efficiency and performance improvements.

2.5 Overall Objectives

From examining the hybrid cloud features, it is easy to see that in order to be able to cater for the mul-
tiple deployment options, and therefore aim at maximum traction with the community, the Cloud-
Button platform should be cloud-native itself, because this approach is highly modular and exten-
sible and allows to gradually build an ecosystem around CloudButton. Indeed, as we explain in
Section 4, we follow the cloud-native microservices based approach to the CloudButton architecture.

In general, we simultaneously target two different approaches predicated on the level of con-
trol of the backend FaaS framework used to execute serverless workloads. In case of the public
cloud, this control is limited, which reduces CloudButton scheduling to relatively simple algorithms
(mostly focusing on pooling capacity across clouds and/or cloud regions) with no ability to guaran-
tee SLO/SLA for the workloads, but rather resorting to general improvements, such as caching to
improve overall performance of the platform. In case of the K8s hybrid cloud based deployment, the
level of control is much higher and the CloudButton components related to scheduling and SLA/SLO
enforcement can be much more sophisticated. To capture these different approaches within the same
architecture, we define APIs for the services that will implement them and provide different "plug-
ins" suitable for different deployment constellations, thus also opening a door for third party FaaS

Page 7 of 54

H2020 825184 RIA
03/07/2022 CloudButton

backend plugins, schedulers, orchestrators, runtime systems, user facing clients, etc.
From the exploitation perspective, we aim at creating at least two levels for the project: a light

weight "community edition" with only minimal functionality that would be suitable to run relatively
small workloads by a single user and an "enterprise edition" aiming at multi-tenant, production-
worthy deployments.

3 State of the Art

3.1 Workflow orchestrates

FaaS is based on the event-driven programming model. In fact, many event-driven abstractions like
triggers, Event Condition Action (ECA) and even composite event detection were already inspired
by the veteran Active Database Systems [22].

Event-based triggering has also been extensively employed in the past to provide reactive coor-
dination of distributed systems [23, 24]. Event-based mechanisms and triggers have also been exten-
sively used [25, 26, 27, 28] in the past to build workflows and orchestration systems. The ECA model
including trigger and rules fits nicely to define the transitions of finite state machines representing
workflows. In [29], they propose to use synchronous aggregation triggers to coordinate massively
parallel data processing jobs.

An interesting related work is [28]. They leverage composite subscriptions in content-based
publish/subscribe systems to provide decentralized Event-based Workflow Management. Their
PADRES system supports parallelization, alternation, sequence, and repetition compositions thanks
to content-based subscriptions in a Composite Subscription Language.

More recently, a relevant article [30] has surveyed the intersections of the Complex Event Process-
ing (CEP) and Business Process Management (BPM) communities. They clearly present the existing
challenges to combine both models and describe recent efforts in this area. We outline that our paper
is in line with their challenge “Executing business processes via CEP rules", and our novelty here is
our serverless reactive and extensible architecture.

In serverless settings, the more relevant related work aiming to provide reactive orchestration
of serverless functions is the Serverless trilemma [31] from IBM. In their paper, the authors advo-
cate for reactive run-time support for function orchestration, and present a solution for sequential
compositions on top of Apache OpenWhisk.

A plethora of academic works are proposing different so-called serverless orchestration systems
like [32, 33, 34, 35, 36, 37]. However, most of them rely on non-serverless services like VMs or dedi-
cated resources, or they use functions calling functions patterns which complicate their architectures
and fault tolerance. None of them offer extensible trigger abstractions to build different schedulers.

All Cloud providers are now offering cloud orchestration and function composition services like
IBM Composer, Amazon Step Functions, Azure Durable Functions, or Google Cloud Composer.

IBM Composer service is in principle designed for short-running synchronous composition of
serverless functions. IBM Composer generates a state machine representation of the workflow to
be executed with IBM Cloud Functions. It can represent sequences, conditional branching, loops,
parallel, and map tasks. However, fork/join synchronization (map, parallel) blocks on an external
user-provided Redis service, limiting their applicabillity to short running tasks.

Amazon offers two main services: Amazon Step Functions (ASF) and Amazon Step Functions
Express Workflows (ASFE). The Amazon States Language (based on JSON) permits to model task
transitions, choices, waits, parallel, and maps in a standard way. ASF is a fault-tolerant managed
service designed to support long-running workflows and ASFE is designed for short-running (less
than five minutes) highly intensive workloads with relaxed fault-tolerance.

Microsoft’s Azure Durable Functions (ADF) represents workflows as code using C# or Javascript,
leveraging async/await constructs and using event sourcing to replay workflows that have been
suspended. ADF does not support map jobs explicitly, and only includes a Task.whenAll abstraction
enabling fork/join patterns for a group of asynchronous tasks.

Google offers Google Cloud Composer service leveraging a managed Apache Airflow cluster.

Page 8 of 54

H2020 825184 RIA
03/07/2022 CloudButton

Airflow represents workflows in a DAG (Directed Acyclic Graph) coded in Python, so that it cannot
support cycles. It is not ideally suited for parallel jobs or high-volume workflows, and it is not
designed for orchestrating serverless functions.

Two previous papers [38, 39] have compared public FaaS orchestration services for coordinating
massively parallel workloads. In those studies, IBM Composer offered the fastest performance and
reduced overheads to execute map jobs whereas ASF or ADF imposed considerable overheads. We
will also show in this paper how ASFE obtains good performance for parallel workloads.

None of the existing cloud orchestration services is offering an open and extensible trigger-based
API enabling the creation of custom workflow engines. Our work on Triggerflow tries to fill this
gap, offering a tool to implement existing models like ASF or Airflow DAGs with reactive schedulers
leveraging Knative standard technologies.

3.2 Serverless beyond Function as a Service

Initially FaaS and serverless shared the same definition and the same goal to enable users to execute
their code or flows without manually setup VMs with exact resources required. Initially FaaS also
considered as a "glue" to tie multiple services, so that various events could trigger invocation of
the user’s functions. For example, user may define an event that invokes a function in case new
row added to the database. However today serverless has grown beyond traditional FaaS and now
considered as a broad user experience of getting right resources for their workloads, where user
focus on the business logic and deploy their workload to the cloud while cloud provide the right
resources without user explicitly specify them. As example, consider a user who need to run ML
workload that need large amounts of GPUs. Traditionally, with a serverfull approach, user will get
to his cloud account, perhaps using UI and provision right set of VMs with GPUs. Then deploy the
ML workload, monitor VMs, collect the results when job completed and then shut down VMs or
perhaps keep them idle and deploy another workload. As opposite, with serverless approach, we
believe user should use "push to the cloud approach" where he deploy his ML workload only while
all resources provisioned on demand in run-time, results collected, transferred back the user and then
all resources automatically dismantled. New evolving solutions,like Ray [40] are cluster approach to
provide user a "serverless" experience over Ray cluster which is designed to scale ML workloads.

Page 9 of 54

H2020 825184 RIA
03/07/2022 CloudButton

4 Final design and Implementation of the Serverless Compute Engine for Big Data

We now describe the Lithops [2] framework and how it being used for the High Performance Server-
les Compute Engine (HPSCE), Operations Support and Big Data Serverless Execution Engine. Lithops
is the main part of the Serverless Compute Engine for Big Data that is developed in WP3 that also
contains SLA and Monitoring. We start by describing the Lithops module. As you will see, not only
Lithops is a main module in the HPSCE and all other tasks of WP3, but also serves as a "glue" to tie
various components and modules that were developed during the course of CloudButton project.

4.1 Lithops general architecture and design

Lithops is a multicloud framework that enables the transparent execution of unmodified, regular
Python code against disaggregated cloud resources. With the Lithops, there is no new API to learn. It
provides the same API as Python’s standard multiprocessing [41] and concurrent.futures [42] and
PyWren-IBM [43] libraries. Any program built on top of these libraries can be run on any of the major
serverless computing offerings in today’s market. This minimizes the learning curve for knowledge-
able Python developers, keeps interfaces simple and consistent, and provides access transparency
to disaggregated storage and memory in the cloud. Further, its multicloud-agnostic architecture
ensures portability and overcomes vendor lock-in. Altogether, this represents a significant step for-
ward in the programmability of the cloud. Lithops enables transparent access for users to virtually
unbounded multicloud resources as nothing more than writing a program with a familiar language.

The initial prototype of Lithops was designed to work with IBM Cloud Functions [11] FaaS plat-
form to run MapReduce tasks as serverless functions, compositions of functions, etc., and IBM Cloud
Object Storage (IBM COS) to store all internal data required to make cloudbutton working. IBM
Cloud Functions, which is based on Apache OpenWhisk, is a public cloud FaaS platform for running
functions in response to events while IBM COS is IBM’s public cloud offering for unstructured data
storage service designed for durability, resiliency and security.

Currently, Lithops is completely refactored, and it now integrates what we called Compute and
Storage abstractions. These two abstractions allow to integrate in our architecture any compute
and storage service beyond IBM Cloud Functions, hiding its underlying vendor-specific implemen-
tations with common high-level methods. Thus, Lithops can be now identified as extensible and
multicloud. For example, as of today, it already supports all the compute and storage backends
listed in Table 1.

Cloud Compute backend Storage backend

IBM IBM Cloud Functions IBM COS

Amazon
AWS Lambda

AWS Fargate
AWS S3

Google
Cloud Functions

Cloud Run
Google Storage

Microsoft Azure Functions Azure Blob Storage

Alibaba Function Compute Alibaba OSS

Generic Knative, KEDA Swift, Ceph, Redis

Table 1: Lithops backends

The high-level architecture is depicted in Figure 4. Internally, the Lithops engine exploits the
Python’s dynamism to transparently capture the user’s function and dependencies, package them,
and upload them to the cloud. It is worth to note that the user’s functions are not directly deployed

Page 10 of 54

H2020 825184 RIA
03/07/2022 CloudButton

Figure 2: High level representation of Lithops

in the serverless compute backend. Instead, they are stored in the storage backend. Then, Lithops
deploys a generic function called Agent responsible to lookup the packaged code and dependen-
cies and run them. The usage of a function’s Agent removes the overhead for function registration,
favors the reuse of the single registered function in order to mitigate cold starts, and allows to run
user-defined functions. At the same time, it eliminates the majority of hindering barriers about de-
ployment, packaging and task execution that inhibit most users from painlessly entering the cloud.

In our effort to create a transparent and extensible framework, Lithops is built following a plugin-
oriented model. To do so, we created the compute and storage abstractions in our architecture. These
abstractions hide the underlying complexities of each compute and storage service, at the same time
that they allow any new serverless compute and storage service to be easily integrable in our frame-
work at later stage.

Another key component of the architecture is the runtime. The runtime is the place where the
functions are executed. It can take different forms depending of the Serverless compute backend, for
example, from Docker containers to python virtual environments packaged into a zip file. In any
case, it contains the Cloudbutton Agent as the main entry point. Thus, the runtime with the Agent
is deployed as a single generic function in the serverless compute backend. In this way, during
the execution of a multiprocessing application, the Cloudbutton engine orchestrates the serverless
compute backend to invoke, at large scale, the necessary Agent functions, each one representing one
parallel process. Then, each function receives a json payload indicating where the user function’s
code and dependencies are stored, the data to be processed, and the place to store the final results.

Lithops offers much more flexibility in contrast of other tools. It allows to configure function
memory in runtime, configure the desired number of workers for each application, and much more.
Moreover, it includes a fault-tolerant mechanism that allows to run a job until completion, even if a
function failed the execution of a single task. To summarize, Lithops can be viewed as a multicloud,
large scale, executor engine, capable of running any local multiprocessing-based Python code in any
Cloud. It is currently open-sourced in github [44].

One core principle behind CloudButton is programming simplicity. For this reason, we have
devoted extra efforts to integrate Lithops with other tools (e.g., Python notebooks such as Jupyter),
which are very popular environments for the scientific community. Python notebooks are interactive
computational environments, in which one can combine code execution, rich text, mathematics, plots

Page 11 of 54

H2020 825184 RIA
03/07/2022 CloudButton

and rich media.

4.2 No vendor lock-in and multi cloud portability

Vendor lock-in is usually one of the major concerns preventing wide adoption of the cloud and in
particular of the serverless platforms. Up today, numerous serverless platforms offers different APIs,
semantics and provides different user experience. With such diversity, it makes very complicated
for the developer to move application from one serverless platform to another. As example, if user
adapted his software to deploy workloads to the IBM Cloud Functions and now need to deploy
same workload to the Kubernetess cluster, it will require him to learn K8s API and semantics and
write dozens of the boiler plate code to support additional K8s as a compute backend. To address the
vendor lock-in issue and to easy the user experience of using various cloud providers, we have de-
signed Lithops to expose standard Python APIs while internally Lithops supports variety of server-
less platforms. Figure 3 shows how same Lithops API supports both Amazon Lambda and IBM
Cloud Functions

Figure 3: Multi-cloud experience with Lithops

4.2.1 Multiple APIs

At high-level, Lithops is shipped with two different Compute APIs that allow to interact with the
underlying compute platforms, abstracting away the complexities of managing and using these ser-
vices. These APIs are the Futures API and Multiprocessing API which also standard APIs that are
popular among Python applications. In addition, Lithops provides a Storage API that allows to in-
teract with a storage backend for managing data (upload/download/move/delete) in a simple way.

4.2.2 Futures API

Lithops implements a similar API to the built-in python concurrent.futures library.
This API is based on objects called Futures, created when Lithops spawns a function. With this

Future object, it is possible to access the results and some statistics about the execution. For example,
we can use the callasync() API method to spawn only one function and get the result by managing
the generated Future 6

4.2.3 Multiprocessing API

Lithops implements most of the built-in python multiprocessing library methods and abstractions to
run tasks in the Cloud with a familiar API. For example, we can create a pool() and use the map()
method to spawn one function for each entry in an iterable list. Lithops now supports most of the

Page 12 of 54

H2020 825184 RIA
03/07/2022 CloudButton

Figure 4: Futures API of Lithops

Figure 5: Future API of Lithops

Python multiprocessing abstractions, such as the Process, Pool, Queue, Pipe, Lock, Semaphore,
Event, Barrier, and also remote memory in Manager objects.

Figure 6: Multiprocessing API of Lithops

Page 13 of 54

H2020 825184 RIA
03/07/2022 CloudButton

4.2.4 Storage API

The storage API makes it easy to operate the storage backend with simple API methods similar to the
python boto3 library. The Storage API in conjunction with a compute API provides unprecedented
flexibility to run tasks to the Cloud like big data analytics or other kind of applications that involves
data analysis or management. For example, we can use the storage API to upload a file from our com-
puter to a cloud storage service, and then get this file from a function spawned with the callasync()
as shown in Figure 7

Figure 7: Storage API of Lithops

4.2.5 Storage OS API

Lithops provides a transparent way to interact with the storage backend. The module lithops.storage.cloudproxy
mimics the os and the built-in function open to access Cloud Storage as if it were a local file system.
By default, the configuration is loaded from the lithops config file,which is makes it very easy to
access cloud storage via OS API (See 8

Figure 8: Storage OS API of Lithops

4.3 Multiple Storage backends and Big Data processing

Big data processing is crucial for many workloads, like data pre-processing for ML workloads, ETL,
Monte-Carlo simulations and so on. To enable user application to easily access data while work-
ing with Lithops framework we have designed Lithops to expose a single Storage API that can be
easily configured to use most popular storage solutions. Lithops currently supports major storage
platforms, like

• IBM Cloud Object Storage

Page 14 of 54

H2020 825184 RIA
03/07/2022 CloudButton

• Amazon S3

• Google Cloud Storage

• Azure Blob Storage

• Aliyn Object Storage Service

• Infinispan

• Ceph

• MinIO

• Redis

• OpenStack Swift

If developer need to develop additional storage connector, he can simply write it and plug-it into
Lithops framework. All is required to implement Storage API interface of Lithops.

4.3.1 Data discovery and data partitioner

To enable Lithops and effective way to access Big Data, we have implemented an advanced data
Partitioner, which supports the following input data types

• Arrays of any type, e.g., numbers, lists of URLs, nested arrays, etc. A default partitioning
logic is to partition the work allocating each entry in the array as input to a separate serverless
function. As a consequence there will number of serverless tasks as the length of the input
array, where each invocation process a single entry from the input array.

• A list of the data objects;

• A list of URLs, each pointing to a data object;

• A list of object storage bucket names;

• A bucket name with a prefix to filter out only the relevant objects from the bucket.

Data discovery is process that is automatically started when the bucket names are specified as an input.
The data discovery process consists of a HEAD request over each bucket to obtain the necessary
information to create the required data for the execution. The naive approach is to partition a bucket
at the granularity of the data objects, resulting in the mapping of a single data object per serverless
function.

This approach may lead to suboptimal performance and resource depletion. Consider an object
storage bucket with two CSV files, one being 10GB and another one being 10MB in size. If Cloud-
Button would partition the bucket by objects, this will lead to one serverless action processing 10GB
and another one processing 10MB, which is obviously not optimized and may lead to running out of
resource available to the invocation.

To overcome this problem, our Partitioner also is designed to partition data objects by sharding
them into smaller chunks. Thus, if the chunk size is 64MB, then Partitioner will generate the number
of partitions which is equal to the object size divided by the chunk size.

Upon completing the data discovery process, Partitioner assigns each partition to a function ex-
ecutor, which applies the map function to the data partition, and finally writes the output to the IBM
COS service. Partitioner then executes the reduce function. The reduce function will wait for all the
partial results before processing them.

It’s not a trivial to partition a CSV file by byte range, since most likely it will split a single line. For
example, consider a CSV file of 65MB that contains 10000 rows. If we use 64MB chunk size then most

Page 15 of 54

H2020 825184 RIA
03/07/2022 CloudButton

likely the line at 64MB will be divided between two chunks, causing first chunk to have first part of
the line and second chunk the lsst part of the line. Thus counting number of lines in both chunks
will usually lead to the wrong nuber of 10,001 lines. To address this problem, we implemented an
algorithm that prevents a single line to be split into 2 during partition phases.

4.4 Serverless without limits

We designed Lithops to provide serverless user experience over various execution backends. Not
only Lithops supports major FaaS backends, but we also implemented support for standalone back-
ends, like virtual machines. By using Standalone backends Lithops enables to deploy workloads that
not fits into FaaS paradigm. This could be long running job that requires large amount of GPUs or
CPUs that executes some legacy code. Lithops is shipped with 3 different modes of execution. The
execution mode allows you to decide where and how the functions are executed. Different execution
modes of Lithops allow developer to write any Python code, execute it on his laptop or let Lithops to
scale it against any serverless backend by a single configuration change

4.4.1 Localhost execution mode

This mode allows you to run functions in your local machine, by using processes. This is the default
mode of execution if no configuration is provided. It is mainly designed for testing purposes as it
does not need any Cloud to be configured to make it running. By default, the local executor uses a
local storage interface, which is the faster option. However, it can also use any public storage backend
such as the IBM Cloud Object Storage service.

4.4.2 Serverless execution mode

This mode allows you to run functions by using publicly accessible Serverless compute services, such
as IBM Cloud Functions, Amazon Lambda or Google Cloud Functions, among others. In this mode
of execution, each function invocation equals to a parallel task running in the cloud in an isolated
environment. Lithops supports most FaaS platforms as follows

• IBM Cloud Code Engine allows to run applications, job or container on a managed serverless
platform. Auto-scale workloads and only pay for the resources you consume. IBM Code Engine
exposes both Knative and Kubernetes Job Descriptor API. Lithops supports both of them.

• Kubernetes Jobs allows to submit Lithops workloads as a Kubernetess jobs by hiding all com-
plexity of K8s Job descriptor API

• AWS Lambda is a serverless, event-driven compute service that lets you run code for virtually
any type of application or backend service without provisioning or managing servers. ([45])

• AWS Batch enables developers, scientists, and engineers to easily and efficiently run hundreds
of thousands of batch computing jobs on AWS. AWS Batch dynamically provisions the optimal
quantity and type of compute resources (e.g., CPU or memory optimized instances) based on
the volume and specific resource requirements of the batch jobs submitted. ([46])

• Google Cloud Functions Run your code in the cloud with no servers or containers to manage.
Cloud Functions is a scalable, pay-as-you-go functions as a service (FaaS) product to help you
build and connect event driven services with simple, single purpose code.([47])

• Google Cloud Run Develop and deploy highly scalable containerized applications using your
favorite language (Go, Python, Java, Node.js, .NET, and more) on a fully managed serverless
platform. ([48])

• Azure Functions Azure Functions is a cloud service available on-demand that provides all the
continually updated infrastructure and resources needed to run your applications. You focus on
the pieces of code that matter most to you, and Functions handles the rest. Functions provides
serverless compute for Azure. You can use Functions to build web APIs, respond to database
changes, process IoT streams, manage message queues, and more. ([49])

Page 16 of 54

H2020 825184 RIA
03/07/2022 CloudButton

• Apache OpenWhisk executor is an open source and serverless cloud platform that performs
functions in response to events. The platform uses a function as a service (FaaS) model to
manage infrastructure and servers for cloud-based applications and servers. OpenWhisk re-
moves concerns about management of infrastructure and scaling by using Docker containers.
In Lithops, the Apache OpenWhisk executor allows to execute functions in any vanilla Open-
Whisk installation by comunicating with its endpoint API. At the same time, the executor pro-
vides all the necessary methods to build custom runtimes, abstracting and hiding its complex-
ities to the users.

• IBM Cloud Function executor is an extension of the Apache OpenWhisk executor and allow
to execute functions in the IBM Cloud Functions service by using IBM-specific authentication
methods.

• Knative executor is a serverless framework that is based on Kubernetes. One important goal
of Knative is to establish a cloud-native and cross-platform orchestration standard. Knative
implements this serverless standard through integrating the creation of container or function,
workload management and auto scaling, and event models. In Lithops, the Knative executor
allows to run functions in any knative deployment. It also allows to build and deploy docker
runtimes to execute the functions.

4.4.3 Standalone execution mode

This mode allows to run functions by using one or multiple Virtual machines (VM), either in a private
cluster or in the cloud. In each VM, functions run using parallel processes like in the Localhost mode.
Lithops can directly execute code in the operational system of VM or execute code inside Docker
image in the VM. Docker is a tool designed to make it easier to create, deploy, and run applications
by using containers. Containers allow a developer to package up an application with all of the parts
it needs, such as libraries and other dependencies, and deploy it as one package. By doing so, thanks
to the container, the developer can rest assured that the application will run on any other Linux
machine regardless of any customized settings that machine might have that could differ from the
machine used for writing and testing the code.

Lithops allows to run functions using processes within a single docker container. In this way, a
user can create a specific runtime with all the requirements libraries and packages instead of having
to install all of them in the local machine. A stated before, this container is portable and can be
executed in any other machine. In this sense, The docker executor can be used to run functions both
locally or in an other remote server/VM. Currently, the docker executor supports both knative and
Openwhisk/IBM Cloud functions runtimes. this means that a user can re-use these runtimes to run
function in the locally machine without having to install any package.

The benefit of Stanadlone mode, is that some workloads can’t be easily paralyzed and requires
longer execution time with large amount of resources, CPU and GPU. Thus Lithops can automatically
start any number of VMs with many resources and deploy user workload to those VMs, monitor
executions, collect results and dismantle VMs, once analytic job is finished. Lithops supports

• Remote Virtual Machine

• IBM Virtual Private Cloud

• AWS Elastic Compute Cloud (EC2)

4.5 Serverless without constraints and hybrid workloads

For load-intensive or more complex workloads, there is still some unsatisfied demand that is not fully
addressed by today’s serverless offerings, such as being too constrained with respect to available
CPU, memory and disk capacity. The foundational thought is that in established serverless compute

Page 17 of 54

H2020 825184 RIA
03/07/2022 CloudButton

Figure 9: Client-driven serverless model

offerings, code gets isolated by running in a container, (micro-)VM, etc. As part of that, there is
always a dedicated (but relatively limited) amount of CPU, memory, etc. available per invocation.

As shown in the figure 9, the user-facing serverless experience would remain the same as what is
available today. However, the user would get the option to select the resources available for execution
from the full spectrum of VM sizes available, not just a more constrained subset of CPU, mem, disk
and network capacities. An additional benefit of this model is that it would be available at the price
point of regular VMs while expose serverless user experience. Certain workloads (e.g., in the ML/AI
or data processing space) can benefit significantly from running as much as possible on the same
machine for low-latency, in-memory data sharing. To be concrete, this means up to 128 vCPUs, 1TB
of memory, many TBs of local SSD disk, etc. are available per invocation and, potentially, hours of
execution time if needed.

Also, the approach described in this post allows for the acquisition of infrastructure at the regular
VM cost-level. While VMs are provisioned per invocation at the lowest level, the actual code still
runs within one container on top of it. This means the underlying container base image can continue
to be customized by the user by preinstalling libs and taking other configuration steps.

You’d like all infrastructure you’re using to reside in your account, in your VPC, with support
for security groups, public gateways, control over the subnets being used, the ability to use various
storage options, large fast local SSDs and many 100’s of GBs of memory.

We enabled this capability with this abstractions in the Lithops project. This extension to Lithops
offers a very simple serverless map/reduce interface, where capacity management is entirely trans-
parent to the user and where all features mentioned above are delivered.

In particular, Lithops supports the following modes:

• Custom images

• GPUs

• Auto dismantle mode

• Warm machines

• Serverless user experience

• LithopsCloud tool

• Master-Worker approach

Page 18 of 54

H2020 825184 RIA
03/07/2022 CloudButton

Hybrid workloads are crucial for variety of use cases and scenarios. By hybrid we not necessarily
mean multiple clouds, and it may also cover hybrid calculations between private clusters deployed
on premise and public clouds or even hybrid calculations between multiple data centers of the same
cloud provider. As example, consider a pharmacy company that has a very sensitive data that need
to be processed on premise. But once data became less sensitive, it can be further processed in the
public cloud, to benefit from large scale and resources of the cloud provider. We developed Lithops to
support all kind of hybrid workloads, between public clouds, private and public clouds and between
various data centers of the same cloud provider.

4.6 LithopsCloud CLI tool

To easy adoption of CloudButton tools we have developed a LithopsCloud [50] which is a novel com-
mand line interface (CLI) tool that enables iterative way to setup Lithops for the new users. Without
this tool new users need to follow Lithops documentation and setup Lithops configuration file for
specific backend and storage they wish to use. To easy this process, new users can use LithopsCloud
CLI tool and they only required to provide their cloud apikey. Then LithopsCloud will use iterative
way to create Lithops configuration file that is configured for the compute and storage backends.
LithopsCloud supports IBM Cloud Functions, IBM Cloud Code Engine, IBM Gen2 and IBM Cloud
Object Storage. The modular design of LithopsCloud tool allows developers to easily add additional
backends

4.7 Temporary data

Temporary data is a special kind of data that only required between different stages during the ex-
ecution process while at certain point this data need to be cleaned. The cleaning process may be
automatically invoked or can manually triggered manually by user actions. In CloudButton we ad-
dress two types of temporary data
System generated is type of data that generated internally by Lithops. The process usually not visible
to the end user and he is not aware of this type of data. As example Lithops generates a single JSON
file 10 per each invocation. This file includes invocation status, completion timestamp, and other
metadata that is needed by Lithops. Once all invocation completed, Lithops reads all generated files,
obtain statuses of each invocation and decides what response return to the user.

Figure 10: Status JSON file

User generated This type of temporary data is usually implicitly generated by the user. As exam-
ple, analytic job may consists of various stages, where output of one stage is used as in input to the
consequence stage. In this scenario, application needs implicitly persist intermediate data between
stages. It’s then user responsibility to invoke cleanup of the temporal data. To enable the capability
we designed and implemented CloudObject which is special type of data that can be used to share
data between stages.

4.8 CloudObject to share results and maintain state

We noticed that data sharing in variety of use cases is essential because each serverless job is memory
limited and also run in an isolated environment. Dealing this challenge naively would be manually
define unique storage keys for each object, but we found that this approach can be confusing and even
quite messy when applying parallel jobs - it requires to configure keys prefixes for each task and also

Page 19 of 54

H2020 825184 RIA
03/07/2022 CloudButton

developing dedicated indexing logic for each one. Trying to make the code clearer and cleaner, we
defined a generic user-friendly class called “CloudObject” which contains all required details to reach
the storage object that it represents. For example, when processing several serverless jobs in parallel,
we can simple store CloudObjects as follows: By this approach, the CloudObject can be considered as

Figure 11: CloudObject

a pointer to the stored data, without the necessity of managing its storage path exactly, and Lithops
can encapsulate code that manages the storage service instance. We use CloudObjects as part of an
external storage system that was developed to store intermediate pipeline results and load each result
when needed. By this approach, the user can automatically load these intermediate results if they
have already been calculated before and avoid recomputation. After finishing all pipeline analytics,
the user can clean its cache easily.

CloudObjects also used to share results between multi-stages jobs and also enables to persist state
to support statefull invocations.

4.9 Cost effective serverless model for Big Data analytics

Serverless platforms are often provides very attractive cost model, where consumers pay for the
actual resources being consumed. This is different to previous cost models, where billing is done per
virtual machines, no matter how much it consumed. Billing in serverless platforms usually calculated
per seconds and depends on the memory consumed, CPU requested and execution time. While this
is very attractive, improper usage may trigger very high costs. There are various reasons that may
trigger high costs

• Requesting too much resources. For example, user need to extract colors from binary images.
He submitted as number of invocations as number of images and requested 4GB per invocation.
While there is nothing wrong from technical point of view, it might be that 4GB is too much
and user could use 2GB of memory, reducing costs by 2.

• Stalled invocations. This may happen because invocations access 3rd party resources that are
slow in responding, bug in the user code, etc. If invocation get stuck, user will pay for it until
it halted. This obvious may trigger high costs for the straggler invocations

To address the issues above, we implemented different approaches in Lithops which are tuned
for standalone and serverless backends. For standalone backends, Lithops has automatic disman-
tle counter that is running inside standalone backend. If there is no activity, than after configurable
amount of time, the virtual machine will be auto dismantled. This prevents use cases of stalled
invocations for standalone backends. We have also implemented mechanism that will shut down
standalone backend within specific time limit, even if there is activity. This prevents situations where
user code entered endless loop and keep standalone baclend active all the time. For FaaS backends

Page 20 of 54

H2020 825184 RIA
03/07/2022 CloudButton

FaaS Layer

...

Cloud thread 1

Cloud thread n

Cloud thread 2

DSO Layer

Obj D

Node 0

Obj B

Obj A

Node m

Obj A

Node 1

Obj C

1) Function invocations 2) Access to shared state

21

Client

Application

Figure 12: CRUCIAL’s overall architecture. A client application runs a set of cloud threads in the FaaS
layer. The cloud threads and the client have access to the shared state stored in the DSO layer.

Lithops can submit "batches" of invocations, where each batch uses different memory and CPU foot-
print. Thus for example if user’s code uses Lithops to process N files of different sizes, it possible to
submit X invocations each requesting 2GB of memory, Y invocations each requesting 3GB of memory
and the rest N-X-Y with 1GB of memory.

Lithops also supports cost effective model, by enabling multi-stages jobs, where some may be de-
ployed over VMs and some over FaaS. As explained in D2.3 (EMBL use case) this approach has many
benefit, reduce costs and is being used by METASPACE of EMBL in their production workloads.

5 Lithops in the broad scope of CloudButton

We now explain how Lithops is used in the broad scope of the CloudButton use cases and partners.

5.1 Crucial

CRUCIAL is a framework to program highly-parallel stateful serverless applications in Java. It is built
upon the key insight that FaaS resembles to concurrent programming at the scale of a datacenter.
Accordingly, a distributed shared memory layer is the natural answer to the needs for fine-grained
state management and synchronization. The framework allows to port effortlessly a multi-threaded
Java code base to serverless, where it can benefit from the scalability and pay-per-use model of FaaS
platforms. CRUCIAL is fully detailed in Deliverable D4.3 [51]. Below, we briefly describe CRUCIAL

then explain how it is usable within the context of Lithops. In particular, we focus on how to call the
distributed shared object (DSO) layer of CRUCIAL from Lithops.

5.1.1 Overview

Figure 12 presents the overall architecture of CRUCIAL. The framework encompasses three main
components (from left to right in Figure 12): (1) the client application; (2) the FaaS computing layer
that runs the serverless functions, aka., cloud threads in Crucial parlance; and (3) the DSO layer that
stores the shared objects. A client application differs from a regular JVM process in two aspects:
threads are executed as serverless functions, and they access shared data using the DSO layer. More-
over, CRUCIAL applications may also rely on external cloud services, such as object storage to fetch
input data (not modeled in Figure 12).

Each object in the DSO layer is uniquely identified by a reference. Fine-grained updates to the
shared state are implemented as methods of these objects. Given an object of type T, the reference to
this object is (T, k), where k is the name of the annotated object field. When a cloud thread accesses
an object, it uses its reference to invoke remotely the appropriate method.

CRUCIAL constructs the DSO layer using consistent hashing [52], similarly to Cassandra [53].
Each storage node knows the full storage layer membership and thus the mapping from data to
node. The location of a shared object o is determined by hashing the reference (T, k) of o. This
offers the following usual benefits: (1) no broadcast is necessary to locate an object; (2) disjoint-access
parallelism can be exploited; and (3) service interruption is minimal in the event of server addition
and removal.

Page 21 of 54

H2020 825184 RIA
03/07/2022 CloudButton

1 dso=os.environ.get(’DSO’)
2
3 def my_function(x):
4 client = Client(dso)
5 d = client.getAtomicCounter("cnt")
6 return d.increment(x)
7
8 if __name__ == ’__main__ ’:
9 fexec = lithops.FunctionExecutor(runtime=’0track/lithops -dso :1.1’)

10 fexec.call_async(my_function , 3)
11 client = Client(dso)
12 c = client.getAtomicCounter("cnt")
13 print("counter: "+str(c.tally()))
14 print(fexec.get_result ())
15 print("counter: "+str(c.tally()))

Listing 1: Using CRUCIAL from Lithops.

Stateful applications (e.g., the training phase of a ML algorithm) often aggregate and combine
small granules of data. Unfortunately, serverless functions are not network-addressable and run
separate from data. As a consequence, these applications are routinely left with no other choice but
to “ship data to code”. This is known as one of the biggest downsides of FaaS platforms [54].

To illustrate this point, consider an AllReduce operation where N cloud functions need to aggre-
gate their results by applying some commutative and associative operator f (e.g., a sum). To achieve
this, each function first writes its local result in the storage layer. Then, the functions await that their
peers do the same, fetch the N results, and apply f sequentially. This algorithm is expensive and
entails a communication cost of N2 messages with the storage layer.

CRUCIAL fully resolves this anti-pattern with minimal efforts from the programmer. Complex
computations are implemented as object methods in DSO and called by the cloud functions where
appropriate. Going back to the above example, each function simply calls f (r) on the shared object,
where r is its local result. With this approach, communication complexity is reduced to O(N) mes-
sages with the storage layer. We exploit this key feature of CRUCIAL in our serverless implementation
of several ML algorithms (e.g., k-means, linear regression, random forest). Its performance benefits
are detailed in D43 [51].

5.1.2 Integration with Lithops

CRUCIAL is callable from Lithops serverless functions. In particular, Lithops may invoke the dis-
tributed shared object (DSO) layer. This provides access to all of the coordination and mutable shared
abstractions in CRUCIAL from a Lithops context. In what follows, we detail how this integration is
made and present a base example.

CRUCIAL is callable from Python thanks to a JPype connector [55]. This connector allows to call
any CRUCIAL objects from a Python program. Under the hood, JPype runs a JVM seperately from the
Python VM and communicate with it using shared memory. The connector covers a few hundreds
lines of code. It is part of the CRUCIAL framework and as such open sourced under an Apache
License [56].

Listing 1 gives an integration example of Lithops with Crucial. In this figure, a shared counter
named cnt is created by the client application (line 12). Function my_function retrieves a reference to
this counter (line 5) and returns its value after an increment (line 6). Notice that the client application
invokes 3 instances of my_function. As a consequence, cnt is incremented 3 three times. Since cnt
is linearizable, the response values of the functions is exactly {1, 2, 3}. As a consequence, the client
application outputs 3 on the console as its final result (line 15).

Page 22 of 54

H2020 825184 RIA
03/07/2022 CloudButton

1 int myFun(int x) {
2 return x + 2;
3 }

1 (module
2 (table 0 anyfunc)
3 (memory $0 1)
4 (export ’memory ’ (memory $0))
5 (export ’myFun ’ (func $myFun))
6 (func $myFun (; 0 ;) \
7 (param $0 i32) (result i32)
8 (i32.add
9 (get_local $0)

10 (i32.const 2)
11)
12)
13)

Figure 13: A C source function and its representation in WASM text format, WAST.

5.2 WebAssembly

WASM [57] is a portable binary format that is the successor to Native Client [58] and asm.js [59].
WASM was originally created to provide software-fault-isolation (SFI) when executing untrusted
code in a browser. Since then, its potential as a general-purpose SFI mechanism has been exploited
in serverless [60], IoT [61], embedded devices [62], edge computing [63], and as a replacement for
container-based isolation in Kubernetes [64].

WASM offers strong memory safety guarantees by constraining memory access to a single linear
byte array, referenced with offsets from zero. This enables efficient bounds checking at both compile
time and runtime, with runtime checks backed by traps. These traps, and others for referencing in-
valid functions, are implemented as part of WASM runtimes [65]. The security guarantees of WASM
are well established in existing literature, which covers formal verification [66], taint tracking [67],
and dynamic analysis [68]. WASM offers mature support for languages with an LLVM front-end
such as C, C++, C#, Go and Rust [69], while toolchains exist for Typescript [70] and Swift [71]. Java
bytecode can also be transpiled [72], and further language support is possible by compiling language
runtimes to WASM, e.g. Python, JavaScript and Ruby. WASM is under active development, with
an extensive roadmap [73] including 64-bit WASM (currently WASM is limited to a 32-bit address
space), shared memory and modules.

5.2.1 Format

Figure 13 shows two listings, one of a simple C function, and the other of the text representation
of its corresponding WASM, using the WebAssembly Text Representation (WAST) [65]. WAST is a
human-readable format that supports two-way translation with WASM binaries via the WebAssem-
bly Binary Toolkit [74].

In the WAST listing we see a top-level module, which forms the basis of all WASM binaries. In-
teraction between WASM modules is not yet officially supported, although multi-module WASM is
under development [73], and there is also partial support for dynamic linking [75]. Each WASM mod-
ule defines a function table, which is used to support indirect function calls via the call_indirect
instruction. Indirect calls are used to support function pointers in source languages that use them,
and when dynamically linking two WASM modules. The memory keyword shows the definition of
the WASM linear memory for this module, which can also include limits on the size of the mem-
ory. If no limit is specified, this limit will be 4 GB, corresponding to the maximum value that can
be represented using a 32-bit integer. The export command specifies which parts of this module are
accessible to the WASM runtime and other WASM modules.

WASM uses a stack machine, with each function defining a set of local variables that can be moved
onto and off the stack and manipulated in place. WASM functions can also load and manipulate
values held in the global linear memory array using integer offsets. WASM enforces a structured
control flow, so does not support arbitrary jumps, hence cannot compile certain language features,

Page 23 of 54

H2020 825184 RIA
03/07/2022 CloudButton

Stack Data

0 stack_top heap_base brk mem_maxstack_ptr

Heap

Figure 14: WASM linear memory layout. All addresses are expressed as offsets from zero. Stack
memory grows downwards towards zero, while heap memory grows upwards towards its maximum
offset at mem_max.

such as goto statements or virtual method tables in C/C++ [76].

5.2.2 Linear memory

Memory in WASM is handled via zero-indexed linear byte arrays. All memory accesses are expressed
as offsets from zero, so can be bounds checked by checking they are greater than zero, and less than
the maximum memory size. WASM code has access to several memory-related operations including
grow-memory and shrink-memory, but cannot allocate disjoint address ranges. The WASM runtime
is responsible for maintaining the memory that backs this linear address space and converting the
offsets into pointers to it. The runtime must halt execution if an invalid memory access is made. The
conformance of a runtime to these rules can be tested using the WASM specification tests [65].

Figure 14 shows the layout of the WASM linear memory, which contains three regions, a stack,
static data, and a heap. The WASM stack grows downwards towards zero, hence has a fixed max-
imum size, which is specifiable by the WASM module using the stack_top value. The static data
associated with the module, such as string literals and constants, is held in the data region, which
does not change size and is created automatically by the runtime. The heap grows upwards towards
the maximum memory size, which can be set by the module, or left to the default maximum which
is roughly four gigabytes in 32-bit WASM.

WASM linear memory is most commonly implemented using a linear byte array placed at the
bottom of a 4 GB virtual memory region. 4 GB is the largest possible linear memory array for a
32-bit WASM module, and by pre-allocating, the runtime can rely on the OS’s memory manager
to cause a page fault if the application makes memory accesses outside of this region. This avoids
the runtime needing to add its own bounds checks on each memory access, which would otherwise
severely affect performance. A standard x86 machine can support a virtual memory address space of
248 bytes, so it has room for more than four billion such mappings. However, this technique will not
be possible with 64-bit WASM, whose linear address space will exceed the available virtual memory
address space of the machine.

5.2.3 Toolchains and runtimes

Although any compiler toolchain may choose to implement a back-end for WASM, the most devel-
oped and widely used is that offered by LLVM [77]. It provides front-ends for a range of languages
including C and C++ through Clang [78], Rust [79], and Go [80]. To execute an application com-
piled to WASM, all library dependencies must also be compiled to WASM. Standard libraries for all
supported languages such as libc and libc++ are provided by open-source projects [81].

There are now many WASM runtimes, each focusing on different execution environments, per-
formance goals, and breadth of features. The most significant difference between WASM runtimes
is whether they interpret the WASM at runtime, or compile it ahead of time (AOT) into machine
code. AOT runtimes offer better performance as the code generation step can introduce architecture-
specific optimisations, but require running this code generation once for each target architecture.
Interpreters are slower, but not platform-specific, so are more suitable for execution environments
where the architecture is not known ahead of time, such as web browsers. The most popular AOT
WASM runtimes are currently: WAVM [82], a general-purpose WASM runtime written in C/C++
with support for all the most recent WASM features; WAMR [83], also written in C/C++ but tar-

Page 24 of 54

H2020 825184 RIA
03/07/2022 CloudButton

geting a smaller resource footprint, suitable for IoT, edge and trusted execution environments; and
wasmtime [84], another general-purpose WASM runtime written in Rust with support for all current
WASM features. The most popular interpreter runtimes are those implemented in the four major
browsers; V8 in Chrome/Chromium [85], SpiderMonkey in Firefox [86], Chakra in Microsoft Edge
[87] and JavascriptCore/SquirrelFish in Webkit [88].

5.2.4 WASI: the WebAssembly system interface

WASM itself does not define a foreign function interface or set of supported syscalls. Such an API
would be platform-specific, and hence at odds with the goals of the project to provide platform-
independent isolation. Platform-specific APIs for interaction with the execution environment and
underlying host will vary between WASM runtimes, but the Bytecode Alliance [89] has created the
WebAssembly System Interface (WASI) [81], which standardises a range of POSIX-like system calls.
WASI uses a capability-based security model [90] across a suite of POSIX-like system calls [81]. These
calls include file I/O, networking, timing and error handling.

5.2.5 Future WebAssembly development

WASM is still evolving, with an extensive roadmap [73]. It is currently limited to a 32-bit address
space, but 64-bit WASM is under active development. The WASM specification does not yet include
mechanisms for sharing memory; there is a proposal to add a form of synchronised shared memory
to WASM [91], but it is not well suited to sharing serverless state dynamically due to the required
compile-time knowledge of all shared regions. It also lacks an associated programming model and
provides only local memory synchronisation.

5.3 C++ - Faasm

FAASM [60] is a serverless runtime that uses Faaslets to execute distributed stateful serverless applica-
tions across a cluster. Faaslets are a new isolation mechanism introduced in FAASM that uses WASM
for inter-function isolation (together with additional Linux tooling). FAASM is designed to integrate
with existing serverless orchestration platforms, which provide the underlying infrastructure, auto-
scaling functionality and user-facing front-ends. FAASM handles the scheduling, execution and state
management of Faaslets. The design of FAASM follows a distributed architecture: multiple FAASM

runtime instances execute on a set of servers, and each instance manages a pool of Faaslets. Details
on the FAASM runtime, Faaslets, and their evaluation are included in Deliverable 5.3 [92].

FAASM is implemented in C++20 and released as open-source code on Github [93]. FAASM is
compiled using clang-13. FAASM applications and all transitive dependencies, e.g. libc, are compiled
to WASM using clang-10 [78], as part of the Faasm CPP toolchain [94]. Faaslets support executing
WASM code in two different WebAssembly runtimes: WAVM [82] and WAMR [83]. FAASM integrates
with Knative v1.1 [95], a state-of-the art serverless framework built using Kubernetes [96], and can
therefore be seamlessly deployed on a Kubernetes cluster.

5.3.1 Faasm integration with Lithops

FAASM can integrate with Lithops as a new Compute Backend of the serverless kind. Given that FAASM

exposes all its endpoints via a REST API, it is straightforward to orchestrate a workflow with Lithops,
and invoke the functions in Faasm. In particular, FAASM already implements a CLI tool, faasmcli
to invoke functions in FAASM from the command line using Python; the integration with Lithops
is then very similar to faasmcli. Figure 15 depicts the architecture in more detail. In particular,
all the calls that Lithops expects compute backends to implement like invoke, deploy, or clear, are
translated to HTTP requests that the FAASM runtime understands. The abstraction behind the REST
API means that FAASM’s deployment model is transparent to Lithops users. We observe that Lithops
native Job object, contains a superset of all the information FAASM ever needs, requiring no changes
to the user-facing API.

FAASM supports executing functions written in compiled languages like C or C++ (with experi-
mental support for Rust), or interpreted languages like Python. Lithops executes functions written
in Python. By integrating FAASM as a Lithops compute backend, we open the possibility of running

Page 25 of 54

H2020 825184 RIA
03/07/2022 CloudButton

Faasm Deployment (Knative or bare metal)

Lithops

deploy

HTTP Requests

invoke clear

Worker

Worker

Worker

Worker

Faasm Compute Backend

Fu
nc

tio
n

R
eg

is
try

Figure 15: FAASM integration with Lithops as a serverless compute backend.

functions in compiled programming languages like C or C++ with Lithops, in addition to functions
written in Python. To support such a model, we add a flag to the user-facing call_async Lithops
method specifying that the function has an external=True definition. The integration is available on
FAASM’s fork of Lithops [97].

Functions need to be registered in FAASM before requests for them can be served. Functions
written in compiled programming languages are (i) cross-compiled to WebAssembly, (ii) uploaded
to FAASM, and upon a succesful upload (iii) machine-code is generated to execute them. To execute
functions written in Python, FAASM cross-compiles the Python runtime [98]. To indicate the function
that runs in the cross-compiled runtime, users must declare it with the signature def faasm_main() [99].

Figure 16 summarises the steps to invoke a function in Lithops with FAASM as compute backend.
First, before functions are invoked, Lithops deploys the backend compute runtime. For FAASM, this
means initialising the workers and the cross-compiled Python runtime. Then, when a function is in-
voked for the first time (i.e. a cold start), we either cross-compile it to WebAssembly using the FAASM

toolchain for C/C++ functions [100], or transpile the pickled Python function to meet the required
structure for Python functions [98]. After a succesful upload, the function can be invoked through
an HTTP request to FAASM. Successive invocations of the same function do not need to repeat the
uploading step. Lastly, given that FAASM and Lithops share the same asynchronous semantics, the
runtime will await until execution has finished, and return the result.

5.3.2 Integration with RedHat and Infinispan

Red Hat Data Grid is an in-memory, distributed, elastic NoSQL key-value datastore. Data Grid is
built from the Infinispan open-source software project and is available to deploy as an embedded li-
brary, as a standalone server, or as a containerized application on Red Hat OpenShift Container Plat-
form. Based on the configuration, Infinispan may persist data in persistent storage or keep it in the

Page 26 of 54

H2020 825184 RIA
03/07/2022 CloudButton

Lithops Faasm Compute
Backend Faasm

deploy

init CPython

invoke

upload

transpile

or

x-compile

invoke

return

return

init workers

Figure 16: Diagram of the invocation of functions in FAASM through Lithops.

memory only. This makes Infinspan as a perfect candidate for storing temporary data. We designed
Lithops so that all internal accesses to storage pass via internal-storage interface. This modular ap-
proach, allows us to use different storage connectors to access different storage backends. To extend
Lithops to access additional storage backend, all what is required is to implement internal-storage
interface and configure Lithops to use new storage. We implemented Infinispan storage connector
prototype that internally implements Infinispan RESTfull API to enable access to the remote Infinis-
pan cluster. A simple configuration is required to leverage Infinispan as internal storage of Lithops

#infinispan:
#username : <USER_NAME>
#password : <PASSWORD>
#endpoint : <INFINISPAN_SERVER_URL:PORT>
#cache_manager : <CACHE MANAGER> # Optional. ’default’ in default value

This enabled to use Infinispan as in memory storage to store temporary metadata generated by
Lithops and avoids to use cloud object storage to store temporary data. There are numerous bene-
fits of this approach in particular reducing overall costs, achieving low latency to Inifnispan which
greatly improves overall execution times. As next steps we plan to benchmark architecture of using
Infinispan and better understand the cost efficiency of this approach.

6 Serverless Workflows

6.1 Triggerflow

In the context of the CloudButton project, we have created Triggerflow [101], a novel building block
for composing event-based services.

Triggerflow aims to leverage existing event routing technology (Knative Eventing) to enable ex-
tensible trigger-based orchestration of serverless workflows. Triggerflow includes advanced abstrac-
tions not present in Knative Eventing like dynamic triggers, trigger interception, custom filters, ter-

Page 27 of 54

H2020 825184 RIA
03/07/2022 CloudButton

mination events, and a shared context among others. Some of these novel services may be adopted
in the future by event routing services to make it easier to compose, stream, and orchestrate tasks.

We can see in Figure 17 an overall diagram of the Triggerflow Architecture. The Trigger service
follows an extensible Event-Condition-Action architecture. The service can receive events from dif-
ferent Event Sources in the Cloud (Kafka, RabbitMQ, Object Storage, timers). It can execute different
types of Actions (containers, Functions, VMs). And it can also enable the creation of custom fil-
ters or Conditions from third-parties. The Trigger service also provides a shared persistent context
repository providing durability and fault tolerance. Figure 17 also shows the basic API exposed by
TriggerFlow: createWorkflow initializes the context for a given workflow, addTrigger creates a new
trigger (including event, conditions, actions, and context), addEventSource permits the creation of
new event sources, and getState obtains the current state associated to a given trigger or workflow.

Different applications and schedulers can benefit from serverless awakening and rich triggering
by using this API to build different orchestration services like Airflow-like DAGs, ASF state machines
or Workflow as Code clients like PyWren.

Trigger service worker

RESTful
API

createWorkflow

addEventSource

addTrigger

getContext

Persistent
Storage

EventSource
Subscribers KafkaSource RedisStreamsSource SQSSource

Worker Event Sink

Global Context

Triggers

Match activation event with trigger

Event-Trigger
Processing

Condition

Trigger
Context

Action

Update
State /

checkpoint

Commit
Event

[true]

Google Composer-like
DAGs Interface

Amazon Step
Functions Interface

PyWren imperative
Interface

User defined container or
default Python functions

Events

Figure 17: Triggerflow Architecture

This proposed architecture must support a number of design goals:

1. Support for Heterogeneous Workflows: The main idea is to build a generic building block for
different types of schedulers. The system should support enterprise workflows based on Finite
State Machines, Directed Acyclic Graphs, and Workflow as Code systems.

2. Extensibility and Computational Reflection: The system must be extensible enough to support
the creation of novel workflow systems with special requirements like specialized scientific
workflows. The system must support introspection and interception mechanisms enabling the
monitoring and optimization of existing workflows.

3. Serverless design: The system must be reactive, and only execute logic in response to events,
like state transitions. Serverless design also entails pay per use, flexible scaling, and depend-
ability.

4. Performance: The system should support high-volume workloads like data analytics pipelines
with numerous parallel tasks. The system should exhibit low overheads for both short-running
and long-running workflows.

Page 28 of 54

H2020 825184 RIA
03/07/2022 CloudButton

Our proposal is to design a purely event-driven and reactive architecture for workflow orches-
tration. Like previous works [25, 26, 27], we also propose to handle state transitions using event-
based triggering mechanisms. The novelty of Triggerflow approach precisely relies on the afore-
mentioned design goals: support for heterogeneous workflows, extensibility, serverless design, and
performance for high volume workloads.

We follow an Event Condition Action architecture in which triggers (active rules) define which
action must be launched in response to Events or to Conditions evaluated over one or more Events.
The system must be extensible at all levels: Events, Conditions, and Actions.

We have developed two different implementations of Triggerflow: one over Knative, which fol-
lows a push-based mechanism to pass the events from the event source to the appropriate worker,
and another one using Kubernetes Event-driven Autoscaling (KEDA), where the worker follows a
pull-based mechanism to retrieve the events directly from the event source. We created the proto-
types on top of the IBM Cloud infrastructure, leveraging the services in its catalog to deploy the
different components of our architecture. These components are the following:

• A Front-end RESTful API, where a user connects to interact with Triggerflow.

• A Database, responsible for storing workflow information, such as triggers, context, etc.

• A Controller, responsible for creating the workflow workers in Kubernetes.

• The workflow workers (TF-Worker hereafter), responsible for processing the events by check-
ing the triggers’ conditions, and applying the actions.

In our implementation, each workflow has its own TF-Worker. In other words, the scalability
of the system is provided at workflow-level and not at TF-Worker level. In our system, the events
are logically grouped in what we call workflows. The workflow abstraction is useful, for example, to
differentiate and isolate the events from multiple workflows, allowing to share a common context
among the (related) events.

To demonstrate the flexibility that can be achieved using triggers with programmable condi-
tions and actions, we have implemented three different workflow models that use Triggerflow as
the underlying serverless and scalable workflow orchestrator: based on State Machines (Amazon
Step Functions), Directed Acyclic Graphs (Airflow), and Workflow as Code (Lithops).

We showcase here the Workflow as Code use case. The trigger service is also useful to reac-
tively invoke an external scheduler because of state changes caused by some condition. For example,
Workflow as Code systems like Lithops or Azure Durable Functions represent state transitions as
asynchronous function calls (async/await) inside code written in Python or C#. Asynchronous in-
vocations and futures in Lithops or async/await calls in Azure Durable Functions simplify code so
developers can write synchronous-like code that suspends and continues when events arrive.

The model supported by Azure Durable Functions is reactive and event-based, and it relies on
event sourcing to restart the function to its current state. We can use dynamic triggers to support
external schedulers like Durable Functions that suspend their execution until the next event arrives.

In Lithops API, the functions call_async and map are used to invoke one or many functions.
Lithops code is executed normally in a notebook in the client, which is usually adequate for short
running workflows. But what if we want to execute a long-running workflow with Lithops in a re-
active way? The solution is to run this Lithops code in Triggerflow reacting to events. Here, prior to
perform any invocation, Lithops can register the appropriate triggers, for example a function termi-
nation trigger in call_async function and an aggregate trigger for all functions in a map invocation.

After trigger registration for each function, the function can be invoked and the orchestrator func-
tion could decide to suspend itself. It will be later activated when the trigger fires.

To ensure that the Lithops code can be restarted and continue from the last point, we use event
sourcing. When the orchestrator code is launched, an event sourcing action will re-run the code
acquiring the results of functions from termination events. It will then be able to continue from the
last point.

Page 29 of 54

H2020 825184 RIA
03/07/2022 CloudButton

Trigger
Condition:

Join

Lithops code

Termination
Events

map()

call_async() Events
Already

invoked?

Asynchronous invoke

Continue
execution

Add dynamic
trigger

[Yes]

[No]

Stop
execution

Trigger Action:
Replay event
sourcing code Serverless

Function

Start execution

Figure 18: Life cycle of an event sourcing-enabled workflow as code with Lithops as external sched-
uler

In our system prototype, the event sourcing is implemented in two different ways: native and
external scheduler.

In the native scheduler, the orchestration code is executed inside a Triggerflow Action. Our Trig-
gerflow system enables then to upload the entire orchestration code as an action that interacts with
triggers in the system. When Triggerflow detects events that match a trigger, it awakens the native
action. This code then relies on event sourcing to catch up with the correct state before continuing
the execution. In the native scheduler, the events can be retrieved efficiently from the context and
thus accelerate the replay process. If no events are received in a period, the action will be scaled to
zero. This guarantees reactive execution of event sourced code.

In the external scheduler, we use Lithops [2], where the orchestration code is run in an external
system, like a Cloud Function. Then, thanks to our Triggerflow service, the function can stop its
execution each time it invokes for example a map(), recovering their state (event sourcing) when it
is awaken by our TF-Worker once all map() function activations finished their execution. Moreover,
to use our event sourcing version of Lithops, it is not required any change in the user’s code. This
means that the code is completely portable between the local-machine and the Cloud, so users can
decide where to run their Lithops workflows without requiring any modification. The life cycle of a
workflow using an external scheduler can be seen in Figure 18.

6.2 Apache Airflow

Apache Airflow [7] is an open source platform that provides authoring, scheduling and monitoring
of workflows represented as directed acyclic graphs (DAGs). Every node of the DAG represents a
task, and the edges represent dependencies between tasks, and thus, the order of execution.

Apache Airflow’s main objective was to be a scheduling platform for ETL workflows with a focus
on the integration of different services from potentially different Cloud providers. In Airflow, DAG
nodes are made up of two components: on the one hand we have the operator, which is the entity that
describes how or where a task should be executed; on the other hand, the task defines the business
logic of the job in question. This design enables Airflow to be extensible, since new operators can be
implemeted and embedded into Airflo in order integrate different services.

In addition, Airflow allows to benefit from great workflow fault tolerance, logging, and observ-
ability features. One key concept of Airflow is its “configuration as code” paradigm used to compose
DAGs as a Python script, which is very convenient to design, maintain and reuse complex workflows.
Also, workflows can be triggered from many sources, like periodic cron triggers so that executions

Page 30 of 54

H2020 825184 RIA
03/07/2022 CloudButton

are scheduled automatically. Finally, Airflow GUI makes it comfortable to schedule and monitor
DAG runs.

The Airflow architecture, in brief, can be separated into two components. The scheduler is the
component that is responsible for monitoring workflows and tasks and dispatching the correspond-
ing tasks according to their dependencies. On the other hand, we have the workers, who are in
charge of executing the logic of the assigned tasks. Airflow can scale, however, it is not designed
to support all the workload on the servers themselves. Rather, the workload is usually delegated to
other external services. Therefore, running many tasks in parallel, such as a Map-Reduce workflow,
can significantly overwhelm the load on the worker nodes and can saturate the entire system.

On the other hand, serverless functions, and in particular the Lithops framework, provide a good
opportunity to offload all this massively parallel work off the Apache Airflow cluster.

The advantages of running a serverless workflow with Airflow are clear. On the one hand, one
has the instant scalability of serverless functions available. In addition, FaaS services do not charge
for idle time, so resources are used more efficiently. On the other hand, Airflow provides a robust,
fault-tolerant system for orchestrating complex, long-running workflows, with the ability to repeat
failed tasks without the need to rerun the entire workflow from the beginning.

Below we describe the newly developed operators that allow serverless functions to be executed
as part of an Airflow workflow using the Lithops framework:

• LithopsCallAsyncOperator: It invokes a single function – Utilizes FunctionExecutor.cal_async
call from Lithops framework

Figure 19: Lithops Plugin for Apache Airflow - Call Async Operator

• LithopsMapOperator: It invokes multiple functions as a parallel Map – Utilizes FunctionExecutor.map
call from Lithops framework

Page 31 of 54

H2020 825184 RIA
03/07/2022 CloudButton

Figure 20: Lithops Plugin for Apache Airflow - Call Async Operator

• LithopsMapReduceOperator: It invokes a full Map-Reduce job as mutiple parallel functions –
Utilizes FunctionExecutor.map_reduce call from Lithops framework

Figure 21: Lithops Plugin for Apache Airflow - Map Reduce Operator

These new operators have been developed using the Apache Airflow plugin API, which provides
developers with a generic interface that allows new third-party operators to be developed in parallel
to the base project. For this case, a Lithops Plugin has been developed for Apache Airlfow that
incorporates the operators described above for use in the required DAGs. The Lithops Plugin for
Apache Airflow is open source and available on GitHub5.
Use case: Geospatial workflows As a demonstration of a real scenario where mixing serverful and
serverless computation is required, we have implemented a scientific geospatial data analysis work-
flow from the project’s geospatial use case. The workflow is about the computation of the Normalized
Difference Vegetation Index (NDVI) of a set of terrestrial plots using geospatial data from the ESA
produced by the SENTINEL satellite.

The first phase of the workflow requires to download and transform (pre-process) satellite image
data. This process is slow (around 30 minutes), needs more memory than current serverless function
services can provide, uses “blackbox” legacy software from the ESA and parallelization is not pos-
sible. However, atmospheric and geometric correction is necessary and recommended to minimize
distortions in the image that may be caused by clouds or alterations in satellite movement, sensor

5https://github.com/lithops-cloud/airflow-plugin

Page 32 of 54

https://github.com/lithops-cloud/airflow-plugin

H2020 825184 RIA
03/07/2022 CloudButton

failure, etc. After the pre-processing and optimization of the data, the transformed satellite data can
then be processed in parallel using serverless functions.

Using different task operators in Airflow, we can now seamlessly mix serverful and serverless
tasks in the same workflow. In this case, we are using the AWS Batch operator to run the task that
requires running in a server instance instead of on a serverless function. Thanks to Apache Airflow’s
operator design, we can combine different services in the same workflow, as well as monitor and
orchestrate using the same environment. Figure 22 shows the DAG representation of the NDVI
workflow in Apache Airflow web console, where we can see how AWS Batch and Lithops operators
are used.

Figure 22: Lithops Plugin for Apache Airflow - NDVI workflow

7 SLA Monitoring and Management

7.1 Rational behind the CloudButtonSLA component

The architecture of the SLA Management component was explained in D3.1. It offers a solution that
handles the complete lifecycle of an SLA management strategy considering two well-differentiated
phases: the definition of the contract between the providers and consumers of services, and monitor-
ing its fulfillment in real time.

The development of CloudButtonSLA has taken place making use of the CloudButton testbed, as
explained in D2.5. CloudButtonSLA is offered as open source, and it can be installed following the
instructions on the readme file at https://github.com/cloudbutton/sla-management.

We will describe how the SLA Manager has been adapted to operate as the central point of mon-
itoring and QoS assessment of the execution of Serverless Data Analytics workflows running with
Lithops.

Figure 23: Architecture of SLA Manager.

Page 33 of 54

H2020 825184 RIA
03/07/2022 CloudButton

During the first period, in the context of CloudButton, some of the main components of the SLA
Manager were enlarged to serve the CloudButtonSLA needs (Prometheus monitoring adapter, Rabbit
and Prometheus Pushgateway observer notifier, etc see D3.2). The objective of the CloudButtonSLA
focused on enabling the continuous monitoring of Lithops functions execution by using the metrics
provided by Knative and Kubernetes at runtime. In the second period we identified that this scenario
has limitations when supervising the execution of Serverless Data analytics workflows:

• The mentioned metrics were based on the performance of the system only, and they could be
influenced by side-effects.

• This monitoring will not give information about Lithops using other runtime backends, as IBM
Cloud Functions, for example.

Thus, we have worked on the integration of the CloudButtonSLA with Lithops itself, to get a
more detailed information about the execution of Serverless Workflows with Lithops.

As explained in 6 Lithops, each map or reduce computation is executed as a separate compute
job. FunctionExecutor class is responsible for orchestrating the computation in Lithops. During its
initialization it sets up the workers (depending on the specific compute backend), such as construct-
ing docker images, defining IBM Cloud Functions, etc. All workers of a job are assigned the same
amount of memory and are expected to have a similar execution time. Once job creation is done
and the job_description record for the new job is returned to the FunctionExecutor object, it pro-
ceeds to execute the job as a set of independent calls (invocations). This means call invocation is
concurrent from the start. FunctionExecutor completes when all calls have notified completion, or a
pre-configured timeout has expired.

The rationale of the CloudButtonSLA component in the High Perfmornance Serverless Compute
Engine architecture is to describe contexts that affects the QoS of the workflows running with Lithops
and inform about anomalous situations. We have identified two contexts and three anomalous situ-
ations and defined the corresponding SLA constraints. CloudButtonSLA can react to the anomalous
situations with the help of Lithops, or it can just inform and record the violation as a new metric.

Context 1: Execution time of Serverless Data Analytics Workflow.

In this context we identify the situations that makes a Serverless workflow being run with Lithops
to not end in the expected time. We can describe this context by means of two anomalous situations:

• notStarted: During initialization, some of the independent calls (functions) that made up a job
do not start properly.

• tooLong: During execution of the job, some of the independent calls (functions) are taking more
than other calls in the same job to end.

Context 2: Total Cost of Serverless Data Analytics Workflow running on IBM Cloud

In this context, we supervise the cost (in US $) of the execution of a Serverless Data Analyt-
ics Workflow in IBM Cloud Functions from the information provided by IBM 7. Actually, it will be
straightforward to supervise the cost in other context (Google Cloud, AWS,etc) just by applying the
corresponding formula. We can describe this cost by means of one anomaly:

• tooCostly: The added cost of the execution of all the functions that made up the jobs performed
in a single Lithops instance, obtained from the IBM formula, exceeds the total desired cost.

Now that the anomalies that we need to identify are being defined, we can use CloudButtonSLA
to:

6Lithops Architecture Design: https://lithops-cloud.github.io/docs/source/design.html
7IBM Cloud Functions Cost Calculator https://cloud.ibm.com/functions/learn/pricing

Page 34 of 54

H2020 825184 RIA
03/07/2022 CloudButton

• Describe the anomaly in terms of constraints expressed with the metrics obtained by the Cloud-
ButtonSLA monitoring.

• Identify a violation of the constraint and take actions to minimise the impact of the anomaly.

As described in D3.2, CloudButtonSLA uses a JSON file to state the SLA agreements that ex-
press requirements in terms of QoS. The QoS parameters will be obtained from the monitoring of
the Backend FaaS. CloudButtonSLA performs a continuous monitoring and metrics assessment of
the fulfillment of the constraints and notifies any breach so that actions can be taken to enforce the
agreements.

In the next subsection we will describe how the three anomalies (tooLong, notStarted and tooCostly)
are treated with CloudButtonSLA with the help of the information provided by Lithops, and how
Lithops uses the notifications of the CloudButtonSLA to recover from an anomaly.

7.2 Lithops and CloudButtonSLA integration

7.2.1 Lithops metrics

CloudButtonSLA makes use of the Observability and Monitoring tools of the CloudButton Testbed
Monitoring Setup, described in D2.5. Lithops has been enlarged to produce the metrics needed to
describe contexts that affects the QoS of the workflows running with Lithops.

Lithops sends metrics using the Prometheus Pushgateway everytime a job is created, and a call
(function) is started or ends, independently of the backend runtime being used. The metrics are
accessible from Prometheus at http://77.231.202.2:30990/graph and consumed by CloudButtonSLA,
that takes this IP as a configurable parameter for the monitoring adapter.

Here follows the list of all the metrics stored in Prometheus with information about Serverless
Data Analytics that run with Lithops. The value and all parameters are set by Lithops from the
information of the execution of the instances:

function_start and function_end: The value of this metric corresponds to the UNIX epoch time
when the function with the corresponding call_id has started (ended). There is such a metric for each
of the functions that will run concurrently to perform the job identified by job_id

Example from function_end (function_start is analogous):

1 "metric": {
2 "__name__": "function_end",
3 "call_id": "58d244 -0-M001 -00000" ,
4 "exported_instance": "58 d244",
5 "exported_job": "lithops",
6 "function_name": "map_interpolation",
7 "instance": "192.168.19.39:9091" ,
8 "job": "pushgateway",
9 "job_id": "58d244 -0-M001",

10 "namespace": "knative -monitoring",
11 "pod": "pushgateway -prometheus -pushgateway -8598 ddbfb6 -qs6gw"
12 },
13 "value": [
14 1639482191.321 ,
15 "1639482044.8831794"
16]

job_total_calls: The value of this metric is the number of independent calls (functions) that will
run concurrently to perform the job identified by job_id

Example:

1 "metric": {
2 "__name__": "job_total_calls",
3 "exported_instance": "58 d244",

Page 35 of 54

H2020 825184 RIA
03/07/2022 CloudButton

4 "exported_job": "lithops",
5 "function_name": "map_interpolation",
6 "instance": "192.168.19.39:9091" ,
7 "job": "pushgateway",
8 "job_id": "58d244 -0-M001",
9 "namespace": "knative -monitoring",

10 "pod": "pushgateway -prometheus -pushgateway -8598 ddbfb6 -qs6gw"
11 },
12 "value": [
13 1639482715.694 ,
14 "18"
15]

job_runtime_memory: The value of this metric is the amount of memory in megabytes assigned
to each of the calls (functions) that will run in concurrently to perform the job identified by job_id

1 "metric": {
2 "__name__": "job_runtime_memory",
3 "exported_instance": "58 d244",
4 "exported_job": "lithops",
5 "function_name": "map_interpolation",
6 "instance": "192.168.19.39:9091" ,
7 "job": "pushgateway",
8 "job_id": "58d244 -0-M001",
9 "namespace": "knative -monitoring",

10 "pod": "pushgateway -prometheus -pushgateway -8598 ddbfb6 -qs6gw"
11 },
12 "value": [
13 1639483114.426 ,
14 "2048"
15]

Now that we have explained the metrics that we obtain from Lithops during the execution of
Serverless Data Analytics workflows, we’ll see how they are used to describe the three anomalies in
the two different contexts that we mean to prevent.

7.2.2 PromSQL queries

Prometheus provides a functional query language called PromQL (Prometheus Query Language)
that lets the user select and aggregate time series data in real time. It is a complex language, based on
regular expressions, different operators, etc. to extract information from the metrics that are stored
in Prometheus.

We will use PromQL on the Lithops metrics to describe the notStarted, tooLong and tooCostly
constraints, and have CloudButtonSLA to define them as agreements and assess the fulfilment of the
constraints. We will look for the expressions that can be queried directly in Prometheus to obtain the
information we need to assess the constraints that define each anomaly. Let see how the different
constraints can be expressed in PromQL:

notStarted:

We define the variable totalNotStartedFunctions as the total number of functions not started of
a job. It can be obtained from the difference between the value of the job_total_calls metric for a
specific job_id and the count of the function_start metrics for this job.

totalNotStartedFunctions = sum(job_total_calls)by(job_id)− count(f unction_start)by(job_id)

If any of the concurrent functions of a job didn’t start, this value will be greater than zero, so we
can define the notStarted anomaly with the constraint:

totalNotStartedFunctions == 0

notEnded:

Page 36 of 54

H2020 825184 RIA
03/07/2022 CloudButton

We define the variable FunctionEndMax as the maximum expected duration for a function in a
job, and it is expressed as the different between the function_start time (for the functions that didn’t
end yet) and the average duration time of the functions that have already finished, plus and extra
time of a certain percentage of this duration (plus 30% in the example). For example:

FunctionEndMax = (function_start unless on(call_id)function_end) - on (job_id)
group_left() (1.3 *avg(function_end-function_start) by (job_id))

This query is controlled by a parameter, TFACTOR (time factor), that represent the percentage
over the average time of execution that we consider as a limit.

FunctionEndMax = (function_start unless on (call_id) function_end) - on(job_id)
group_left() ({{.TFACTOR}} * avg(function_end-function_start) by (job_id))

If the actual time (function time(), in Prometheus) minus the FunctionEndMax for any of the
running functions of a job is greater than zero, we can conclude that they are taking to finish longer
than expected.

time() - FunctionEndMax < 0

tooCostly:

We will split the total cost of an experiment, made up by all the jobs belonging to the same in-
stance, (exported_instance in Prometheus), into the cost of the functions that have already finished
plus the cost of the still running functions. Thus, we will define two variables costNotEndedFunc-
tions and costEndedFunctions and apply the IBM formula to calculate the total cost of an instance.

The cost of the ended functions of an instance in IBM cloud is obtained by adding the duration
in milliseconds of all the functions in a job, multiplied by the memory allocated to the functions in
this job (always the same), in megabytes, and again adding together the result for all the jobs in the
instance.

costEndedFunctions = sum(sum(function_end-function_start) by (job_id, exported_instance)
* sum (job_runtime_memory) by (job_id, exported_instance)) by (exported_instance)

For the not ended functions, we just consider the time elapsed between the time when the func-
tion started and the actual time, and we do the analogous calculation.

costNotEndedFunctions = sum(sum(time() - (function_start unless on(call_id)function_end))
by (job_id, exported_instance) * sum(job_runtime_memory) by (job_id, exported_instance))
by (exported_instance)

To make sure that the cost of ended and not ended functions for the same instance are added
together, we use the following join expression:

costFunctions = (sum(sum(function_end-function_start) by (job_id, exported_instance) *
sum(job_runtime_memory) by (job_id, exported_instance)) by (exported_instance)) +
(sum (sum(time() - (function_start\%20unless\%20on(call_id)function_end)) by
(job_id,exported_instance) * sum(job_runtime_memory) by (job_id, exported_instance))
by (exported_instance))

Page 37 of 54

H2020 825184 RIA
03/07/2022 CloudButton

The basic IBM rate (as from today) is $0,000017 GB-s, but in our metrics, we have the memory
expressed in megabytes, and the time expressed in milliseconds, so the rate should be scaled to:
0,000000000017 $ per ms of execution, per Mb of memory assigned. We will also use a parameter to
express this IBM rate, as it can change in the future, called UNITCOST.

We will use a parameter called MAXCOST to express the limit in the cost, so that the constraint
will be:

{{.UNITCOST}} ∗ (costNotEndedFunctions + costEndedFunctions) < {{.MAXCOST}}

7.2.3 CloudButton agreements and Swagger API

Now that we have a way to express the constraints over the anomalies that we need to supervise in
the context of CloudButton execution of Serverless Data Analytics workflows, it is straightforward
to define a JSON file to serve as CloudButtonSLA agreement, as described in D3.2.

The Service Level Agreement will be up by several Agreements that are assessed by the Cloud-
ButtonSLA and notify violations on an independent manner. A Guarantee is defined as a complex
combination of different metric to define the Constraints. For example, the following agreement
will help the CloudButtonSLA to identify the notStarted anomaly and submit a violation everytime
a function doesn’t start. The other agreements (tooLong and tooCostly) will be defined on a similar
way from the already defined variables. You can find the agreaments in https://github.com/cloudbutton/sla-
management in folder "/resources".

1 {
2 "id": "notStarted",
3 "name": "All functions must start",
4 "state": "started",
5 "details":{
6 "id": "notStarted",
7 "type": "agreement",
8 "name": "All functions must start",
9 "provider": { "id": "a-provider", "name": "A provider" },

10 "client": { "id": "a-client", "name": "A client" },
11 "creation": "2020 -01 -01 T17 :09:45Z",
12 "expiration": "2023 -01 -01 T17 :09:45Z",
13 "variables": [
14 {
15 "name": "totalNotStartedFunctions",
16 "metric": "sum(job_total_calls)%20by%20(job_id ,function_name)-count(

function_start)%20by%20(job_id ,function_name)"
17 }
18],
19 "guarantees": [
20 {
21 "name": "notStarted",
22 "constraint": "totalNotStartedFunctions == 0"
23 }
24]
25 }

As explained in D3.2, the CloudButtonSLA has a REST API to control the life cycle of SLA agree-
ments (create, activate, modify, etc). In the context of the CloudButton project, the QoS is clearly de-
fined with the three guarantees that control execution time of the workflows running on the testbed
(notStarted, tooLong) and the cost (tooCostly) of the experiments running of IBM Cloud.

To simplify the SLA Management, CloudButtonSLA will create the three agreements (notStarted,
tooLong and tooCostly) at start up, using SLA Templates. The SLA Templates admit parameters that
can modify the constraints in the final agreement.

Page 38 of 54

H2020 825184 RIA
03/07/2022 CloudButton

Figure 24: SLA logs - initial load of templates

The CloudButton user, instead of submitting an agreement, will only have to submit the value
of the parameters (TFACTOR for context 1 or UNITCOST and MAXCOST for context 2) in order
to create and activate the corresponding agreement. For example, if we have the JSON file called
params_cost.json with the content:

1 {
2 "template_id": "CloudButton_tooCostly",
3 "parameters": {
4 "agreementname": "Total cost of the instance in IBM cloud must be limited",
5 "provider": { "id": "a-provider", "name": "A provider" },
6 "client": { "id": "a-client", "name": "A client" },
7 "UNITCOST": 0.000000000017 ,
8 "MAXCOST": 1.5
9 }

10 }

We can create and start an agreement for context 2 limiting the cost to $1,5 using:

curl -k -X POST -d @ params_cost.json http://localhost:8090/create-agreement

Recently, a GUI based in Swagger 8 has been added to simplify the management of agreements
and templates. It is accessible from http://77.231.202.2:8090/swaggerui

8Swagger is an open source set of rules, specifications and tools for developing and describing RESTful APIs:
https://swagger.io/

Page 39 of 54

H2020 825184 RIA
03/07/2022 CloudButton

Figure 25: SLA Swagger User Interface

7.2.4 Integration with Lithops through Rabbit queue

In D3.2, we explained how CloudButtonSLA assesses the fulfillment of the constraints in all active
agreements and creates a violation message into a Rabbit queue to inform about a breach. This is an
example of the content of a Rabbit message for a violation of the tooLong guarantee.

1 {
2 "Fields": {
3 "AgreementId": "tooLong",
4 "Guarantee": "tooLong",
5 "ViolationTime": "2021 -12 -15 T13 :27:04.307Z"
6 },
7 "Message": [{
8 "key": "2962f6 -0-M000 -00003" ,
9 "value": 1639574814.5585732 ,

10 "datetime": "2021 -12 -15 T13 :27:04.307Z",
11 "resource": "summ"
12 }]
13 }

Lithops has been enhanced to consume the messages on the CloudButton queue and remediate
it. The message shows a tooLong violation, and the key ’2962f6-0-M000-00003’ corresponds to the
function that didn’t finish in the expected time. Lithops will relaunch the function identified in the
key field, and mark the violation as treated. The function will end after relaunch.

Similarly, a notStarted violation message will have in the key field the id of the function that
didn’t, and Lithops will relaunch it. Finally, for the tooCostly violation, the key field will have the id
of the instance that is overspending, and Lithops, after consuming the message from the queue, will
stop the instance and release the resources from IBM Cloud.

The configuration file of lithops has also being enhanced with some new parameters to integrate
with CloudButtonSLA:

telemetry -> Indicates that Lithops will send metrics about functions and jobs into Prometheus
Pushgateway. Also, the Pushgateway URL and the connection to the Rabbit queue are configurable
from the file.

Page 40 of 54

H2020 825184 RIA
03/07/2022 CloudButton

Figure 26: Lithops configuration

7.2.5 Prometheus Pushgateway Violation notification

As described in D3.2, we added a new notifier to the SLA Manager to send the information of an
identified violation to a Rabbit queue, to be consumed by the observer. In the second period, we
have enhanced the notifier with new features:

• A violation not only produces a message in a rabbit queue, but it also produces a metric in
the Prometheus Pushgateway, called CloudButton_sla_QoS_violation that stores information
about the time in which the violation happened, the guarantee that produces it, and depending
on the guarantee type, it will store information about the function_id or the instance affected
by the violation. The main use of this is to create Grafana control panels to display information
about the execution of an experiment, but many other uses, like maybe predictions on future
violations, can be defined in the future.

1 {
2 "metric": {
3 "__name__": "CloudButton_sla_QoS_violation",
4 "agreement": "cost",
5 "exported_instance": "935997" ,
6 "exported_job": "sla",
7 "function_name": "NA",
8 "guarantee": "tooCostly",
9 "instance": "192.168.19.39:9091" ,

10 "job": "pushgateway",
11 "namespace": "knative -monitoring",
12 "pod": "pushgateway -prometheus -pushgateway -8598 ddbfb6 -qs6gw",
13 "violation_time": "2021 -12 -16+15:50:24.037++0000+ WET"

Page 41 of 54

H2020 825184 RIA
03/07/2022 CloudButton

14 },
15 "value": [
16 1639671578.196 ,
17 "1639669824.0500088"
18]
19 }

• Each guarantee is treated separately. By default, the SLA Manager assesses and generates vio-
lations without considering any difference between them. We have added a module that iden-
tifies the constraint that generates the violation and adds some extra logic. For example, from
the assessment we obtain the number of functions from a job that didn’t start, and the addi-
tional logic identifies the function_id of all the non-started functions, so that the information
submitted when the violation is recorded is enriched.

7.2.6 A full sample of context

Let’s now use a sample notebook that creates a compute job in Lithops composed by four serverless
functions that perform a simple task in parallel. We will use a “sleep()” to make one of the functions
to take much longer to perform that the others, so that the CloudButtonSLA will generate a tooLong
violation. Lithops will react to the notification of the violation by relaunching the function.

Figure 27: Notebook to run. The task consists of adding 5 to a number. To avoid entering in a loop
of violations, we use the creation of a file in the Object Storage as a flag. The function with id=3 will
sleep for 40s, and will generate a violation of the CloudButtonSLA

Page 42 of 54

H2020 825184 RIA
03/07/2022 CloudButton

Figure 28: From the logs in the notebook, we see that the functions will call id 0, 1 and 2, ends after
around 3ms (their sleep time). The function with call id 3, is still “sleeping”.

Figure 29: The CloudButton- SLA checks that no function is taking to finish more than 30% over
the average time of the other functions in the job to finish. So after around 1,3*3 ms, it generates a
violation and send the message to the rabbit queue.

Page 43 of 54

H2020 825184 RIA
03/07/2022 CloudButton

Figure 30: From the notebook logs we see that the call 3 ends in around 3ms, as the other functions
in the job after relaunching. The job is deleted after execution and the result is displayed.

Figure 31: Prometheus pushgateway stores the metrics generated by Lithops (for the job and for each
of the functions) and by the CloudButtonSLA (for the violation).

Page 44 of 54

H2020 825184 RIA
03/07/2022 CloudButton

Page 45 of 54

H2020 825184 RIA
03/07/2022 CloudButton

A full demonstration video can be found in the following URL:

https://drive.google.com/file/d/1orlMe1KWtjNGu3O_vcn9MNFLcSultmkg/view

7.2.7 CloudButtonSLA cost control panel in Grafana

We have used Grafana to create a Cost control panel like the following:

Figure 32: Grafana User Interface - Costs panel

This panel shows the cost of finished or ended functions, the cost of unfinished functions, and the
total. In the previous image, we can see how the total cost is continuously growing as the unfinished
functions are still running.

Page 46 of 54

H2020 825184 RIA
03/07/2022 CloudButton

7.3 Predicted metrics with Prometheus holt_winters and predictor_linear

In the first part of the project the idea was to obtain information about the execution of the Serverless
Data workflows on the testbed looking at the metrics generated by different sources, described in
D2.5. Lately we considered that generating specific metrics provided a better solution to QoS.

Nevertheless, the configuration of CloudButtonSLA has been enhanced with new features that
are not directly applied to CloudButton project, but that could be used in a context of QoS as-
sessment in Serverless Data Analytics workflows. The variables to use to define constraints on an
agreement are not limited to the metrics that are specifically generated by Lithops that we have
presented in this document. Any metric on Prometheus can be used to define an SLA. The code
located in (https://github.com/cloudbutton/sla-management) provides an example (in folder "/re-
sources/samples" - template-cpu.json) of how a metric generated by node-exporter can be used to
identify percentage of idle jobs and launch a violation. You can find more information about system
metrics and node-exporter in D2.5.

Together with the possibility to use system metrics, in the second half of the project we have
enhanced the SLA Manager with the option to predict states of the system, and thus, anticipate
the occurrence of a violation. For these we use the Prometheus query functions holt_winters() and
predict_linear(). They use statistical time series forecasting to identify trends and seasonal data and
anticipate future values of the data looking at past values. Both holt_winters and predict_linear need
a Prometheus range vector to obtain a prediction, that is, a time series of the values of the metric to
predict over a past period.

• holt_winters(v range-vector, sf scalar, tf scalar) produces a smoothed value for time series based
on the range in v. The lower the smoothing factor sf, the more importance is given to old data.
The higher the trend factor tf, the more trends in the data is considered. Both sf and tf must be
between 0 and 1.

• predict_linear(v range-vector, t scalar) predicts the value of time series t seconds from now,
based on the range vector v, using simple linear regression.

The use of this functions is limited to gauge data in Prometheus, a metric that represents a single
numerical value that can arbitrarily go up and down. The value is stored together with the moment
in time in which it was produced, and thus they are treated as mathematical time series. Many of the
metrics obtained by the system and Kubernetes are Prometheus gauges metrics.

For the CloudButtonSLA to work on prediction mode, some configuration variables have been
created:

• prometheusPredictor : Prometheus Predictor type. By default, is empty (Real metrics), it can
be set to “holt_winters” or “predict_linear”

• HWSmoothingFactor : Holt-Winters Smoothing Factor. By default, is 0.5

• HWTrendFactor: Holt-Winters Trend Factor. By default, is 0.5

• PLScalar: Prediction Linear Scalar. By default, is 30

Here is an example of a /etc/slalite/slalite.yml file to configure CloudButtonSLA with predictiv-
ity options:

adapter: prometheus -> (The monitoring metrics are obtained from Prometheus)
checkPeriod: 10s -> (Time to wait before querying metrics and performing the assessment)
transientPeriod: 60s -> (Time to wait before repeating a violation already announced)
notifier: rabbitpushg -> (A violation will be notified to both Prometheus and rabbit)
rabbitMQ: amqp://CloudButton:XXXXXXXX@77.231.202.2:5672/ -> (Rabbit system access)
prometheusUrl: http://77.231.202.2:30090 -> (URL to access Prometheus)

Page 47 of 54

H2020 825184 RIA
03/07/2022 CloudButton

prometheusPredictor: holt_winters -> (Function to use on prediction of Gauge metrics)
HWSmoothingFactor: 0.7 -> (Smooth Factor for the Holt Winter prediction)
HWTrendFactor: 0.7 -> (Trend Factor for the Holt Winter prediction)

Now, let’s think that we need to supervise the CPU usage of the Lithops pods created to execute
Serverless Data Analytics workflows. In Prometheus the metric named container_cpu_usage_seconds_total
stores the cumulate CPU usage for pods in a Kubernetes cluster. We can filter Lithops containers only
with container_cpu_usage_seconds_totalcontainer="lithops" and to get a range vector of values, we
can query the time series over the last hour with container_cpu_usage_seconds_totalcontainer="lithops"[60m]

We can create an agreement with the following constraint and start supervising it with CloudBut-
tonSLA.

1 "variables": [
2 {
3 "name": "lithops_cpu_usage",
4 "metric": "container_cpu_usage_seconds_total{container =\" lithops \"}[60m]"
5 }
6 "guarantees": [
7 {
8 "name": "CPU Guarantee",
9 "constraint": "lithops_cpu_usage <= 20"

10 }

If we configure CloudButtonSLA with Real Metrics, it will send a violation when the cumulate
CPU usage of a Lithops container is more than 20s, BUT, if we configure CloudButtonSLA with
holt_winter prediction and sf=tf=0.7, it will send a violation when the cumulate CPU usage of a
Lithops container is expected to reach 20s, before it happens, and the remediation can take place in
time. CloudButtonSLA will automatically substitute the metric in the agreement by the predicted
metric when calling Prometheus:

"container_cpu_usage_seconds_total{container=\"lithops\"}[60m]" ->
“holt_winters(container_cpu_usage_seconds_total{container="lithops"}[60m],0.7,0.7)”

For the prediction to be accurate we need to test with different sf and tf factors, and see which
ones give the best prediction. The same with predict_linear and the t scalar.

8 Summary, conclusions and the next steps

We developed Serverless Compute Engine platform for Big Data which is based on the Lithops frame-
work and also contains advanced SLA and Monitoring. We released Lithops to the open source and
it is now mature, production stable framework. Lithops enables users to easily deploy their produc-
tion workloads against any public or private clouds, while users focus on their business logic and
Lithops handle all deployments, invocations, parallelism, monitoring and so on. This unique expe-
rience enables users to deploy more workloads to the cloud without being tied to particular cloud
and without vendor lock-in. Lithops is an open source project, with growing community and being
used in various use cases outside of the CloudButton scope. In context of CloudButton, Lithops is
also used as a "glue" between various packages developed by other participants of the project. In
particular, C++ - Fasm integration with Lithops and WebAssembly, Shell scripts and Crucial, are all
using Lithops to connect to swrverless platforms.

8.1 Applications

Lithops enables variety of use cases and applications in the broad scope, beyond CloudButton use
cases. We successfully demonstrated how Lithops and technologies we developed enable users to
deploy various workloads against serverless backend engines. Among applications and use cases,
we have successfully demonstrated the following use cases

• AirBnB sentiment analysis of the comments from multiple cities

Page 48 of 54

H2020 825184 RIA
03/07/2022 CloudButton

• Lithops toolkit: Compute and Storage Benchmarks

• Cloudbutton Mandelbrot Set Calculation Example

• GROMACS Computations

• Lithops Moments in Time dataset example

• Monte Carlo Simulations with Lithops

• Hyperparameter tuning grid search example

All examples and demos are public and can be accessed here [102]

8.2 Adoption of the platform by 3rd party developers

We maintain Lithops as an open source project with constantly growing community. The visibility of
the project goes way beyond CloudButton and by date we have 32 contributors, more than 220 stars
and project is being used by 40+ different consumers. To easy adoption of the project we provided
detail documentation web site with tutorials, usage examples as well detailed instructions how to
integrate Lithops into other third-party application without major disruption or rewriting them from
scratch. Also, since Lithops exposes standard Python’s API it became very easy to integrate Lithops
into existing code or application, without major disruption to those applications.

8.3 Next steps

We continue to maintain and further develop Lithops framework. Lithops is being used in produc-
tion by EMBL and there is interest from other organizations to leverage Lithops into their production
use cases. We continue efforts for better visibility of the project and we plan to publish more blogs
and identify additional use cases and application where Lithops can provide benefit. We continue
to maintain the open source aspects of the project and invest efforts into growing the open source
community around this project.

Page 49 of 54

H2020 825184 RIA
03/07/2022 CloudButton

References

[1] Infinispan, “Infinispan.” https://infinispan.org/.

[2] “Lithops - github.” https://github.com/lithops-cloud/lithops, 2021.

[3] SD Times, “Amazon Introduces Lambda, Containers at AWS re:Invent.” https://infinispan.
org/, 2014.

[4] AWS, “Amazon Step Functions.” https://aws.amazon.com/step-functions/.

[5] Microsft Azure, “What are Durable Functions?.” https://docs.microsoft.com/en-us/azure/
azure-functions/durable/durable-functions-overview.

[6] OpenWhisk, “Apache OpenWhisk Composer.” https://github.com/apache/
incubator-openwhisk-composer.

[7] A. Airflow, “Apache Airflow documentation.” http://airflow.apache.org/. Accessed on
June 2019.

[8] Kubeflow, “Kubeflow: The Machine Learning Toolkit for Kubernetes.” https://www.
kubeflow.org/.

[9] Argo, “Argo Workflows & Pipelines: Container Native Workflow Engine for Kubernetes sup-
porting both DAG and step based workflows.” https://argoproj.github.io/argo/.

[10] Fission, “Fission WorkFlows.” https://github.com/fission/fission-workflows.

[11] IBM, “IBM Cloud Functions.” https://www.ibm.com/cloud/functions.

[12] “Apache OpenWhisk.” https://openwhisk.apache.org/.

[13] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht, “Occupy the cloud: Distributed com-
puting for the 99%,” in Proceedings of the 2017 Symposium on Cloud Computing, SoCC ’17,
p. 445–451, 2017.

[14] J. Italo, “Facial mapping (landmarks) with Dlib + Python.” https://towardsdatascience.
com/facial-mapping-landmarks-with-dlib-python-160abcf7d672.

[15] Denis Kennely, “Three Reasons most Companies are only 20 Percent to Cloud
Transformation.” https://www.ibm.com/blogs/cloud-computing/2019/03/05/
20-percent-cloud-transformation/.

[16] TechRepublic, “Rise of Multi-Cloud: 58% of businesses using combination
of AWS, Azure, or Google Cloud.” https://www.techrepublic.com/article/
rise-of-multicloud-58-of-businesses-using-combination-of-aws-azure-or-google-cloud/.

[17] N. Kratzke and P.-C. Quint, “Understanding cloud-native applications after 10 years of cloud
computing - a systematic mapping study,” Journal of Systems and Software, vol. 126, pp. 1 –
16, 2017.

[18] “Apache Mesos.” http://mesos.apache.org/.

[19] Docker, “Docker, Swarm Mode.” https://docs.docker.com/engine/swarm/.

[20] Kubernetes, “Kubernetes: Production-Grade Container Orchestration.” https://kubernetes.
io/.

[21] “Plasma Object Storage.”

Page 50 of 54

https://infinispan.org/
https://github.com/lithops-cloud/lithops
https://infinispan.org/
https://infinispan.org/
https://aws.amazon.com/step-functions/
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview
https://github.com/apache/incubator-openwhisk-composer
https://github.com/apache/incubator-openwhisk-composer
http://airflow.apache.org/
https://www.kubeflow.org/
https://www.kubeflow.org/
https://argoproj.github.io/argo/
https://github.com/fission/fission-workflows
https://www.ibm.com/cloud/functions
https://openwhisk.apache.org/
https://towardsdatascience.com/facial-mapping-landmarks-with-dlib-python-160abcf7d672
https://towardsdatascience.com/facial-mapping-landmarks-with-dlib-python-160abcf7d672
https://www.ibm.com/blogs/cloud-computing/2019/03/05/20-percent-cloud-transformation/
https://www.ibm.com/blogs/cloud-computing/2019/03/05/20-percent-cloud-transformation/
https://www.techrepublic.com/article/rise-of-multicloud-58-of-businesses-using-combination-of-aws-azure-or-google-cloud/
https://www.techrepublic.com/article/rise-of-multicloud-58-of-businesses-using-combination-of-aws-azure-or-google-cloud/
http://mesos.apache.org/
https://docs.docker.com/engine/swarm/
https://kubernetes.io/
https://kubernetes.io/

H2020 825184 RIA
03/07/2022 CloudButton

[22] N. W. Paton and O. Díaz, “Active database systems,” ACM Computing Surveys (CSUR),
vol. 31, no. 1, pp. 63–103, 1999.

[23] C. Mitchell, R. Power, and J. Li, “Oolong: asynchronous distributed applications made easy,”
in Proceedings of the Asia-Pacific Workshop on Systems, p. 11, ACM, 2012.

[24] S. Han and S. Ratnasamy, “Large-scale computation not at the cost of expressiveness,” in
Presented as part of the 14th Workshop on Hot Topics in Operating Systems, 2013.

[25] A. Geppert and D. Tombros, “Event-based distributed workflow execution with eve,” in
Middleware’98, pp. 427–442, Springer, 1998.

[26] W. Chen, J. Wei, G. Wu, and X. Qiao, “Developing a concurrent service orchestration engine
based on event-driven architecture,” in OTM Confederated International Conferences" On the
Move to Meaningful Internet Systems", pp. 675–690, Springer, 2008.

[27] W. Binder, I. Constantinescu, and B. Faltings, “Decentralized orchestration of composite web
services,” in 2006 IEEE International Conference on Web Services (ICWS’06), pp. 869–876, IEEE,
2006.

[28] G. Li and H.-A. Jacobsen, “Composite subscriptions in content-based publish/subscribe sys-
tems,” in ACM/IFIP/USENIX International Conference on Distributed Systems Platforms and
Open Distributed Processing, pp. 249–269, Springer, 2005.

[29] D. Dai, Y. Chen, D. Kimpe, and R. Ross, “Trigger-based incremental data processing with uni-
fied sync and async model,” IEEE Transactions on Cloud Computing, 2018.

[30] P. Soffer, A. Hinze, A. Koschmider, H. Ziekow, C. Di Ciccio, B. Koldehofe, O. Kopp, A. Jacobsen,
J. Sürmeli, and W. Song, “From event streams to process models and back: Challenges and
opportunities,” Information Systems, vol. 81, pp. 181–200, 2019.

[31] I. Baldini, P. Cheng, S. J. Fink, N. Mitchell, V. Muthusamy, R. Rabbah, P. Suter, and O. Tardieu,
“The serverless trilemma: Function composition for serverless computing,” in Proceedings
of the 2017 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software, Onward! 2017, pp. 89–103, 2017.

[32] B. Carver, J. Zhang, A. Wang, and Y. Cheng, “In search of a fast and efficient serverless dag
engine,” arXiv preprint arXiv:1910.05896, 2019.

[33] S. Joyner, M. MacCoss, C. Delimitrou, and H. Weatherspoon, “Ripple: A practical declarative
programming framework for serverless compute,” arXiv preprint arXiv:2001.00222, 2020.

[34] M. Malawski, A. Gajek, A. Zima, B. Balis, and K. Figiela, “Serverless execution of scientific
workflows: Experiments with HyperFlow, AWS Lambda and Google Cloud Functions,” Future
Generation Computer Systems, in press.

[35] A. Jangda, D. Pinckney, Y. Brun, and A. Guha, “Formal foundations of serverless computing,”
Proceedings of the ACM on Programming Languages, vol. 3, no. OOPSLA, pp. 1–26, 2019.

[36] E. Van Eyk, J. Grohmann, S. Eismann, A. Bauer, L. Versluis, L. Toader, N. Schmitt, N. Herbst,
C. Abad, and A. Iosup, “The spec-rg reference architecture for faas: From microservices and
containers to serverless platforms,” IEEE Internet Computing, 2019.

[37] S. Fouladi, F. Romero, D. Iter, Q. Li, S. Chatterjee, C. Kozyrakis, M. Zaharia, and K. Win-
stein, “From laptop to lambda: Outsourcing everyday jobs to thousands of transient functional
containers,” in 2019 USENIX Annual Technical Conference (USENIX ATC 19), (Renton, WA),
pp. 475–488, USENIX Association, July 2019.

Page 51 of 54

H2020 825184 RIA
03/07/2022 CloudButton

[38] P. G. López, M. Sánchez-Artigas, G. París, D. B. Pons, Á. R. Ollobarren, and D. A. Pinto, “Com-
parison of faas orchestration systems,” in 2018 IEEE/ACM International Conference on Utility
and Cloud Computing Companion (UCC Companion), pp. 148–153, IEEE, 2018.

[39] D. Barcelona-Pons, P. García-López, A. Ruiz, A. Gómez-Gómez, G. París, and M. Sánchez-
Artigas, “Faas orchestration of parallel workloads,” in Proceedings of the 5th International
Workshop on Serverless Computing, WOSC ’19, (New York, NY, USA), p. 25–30, Association
for Computing Machinery, 2019.

[40] Ray, “Scaling Python ML workloads .” https://www.ray.io.

[41] Python, “Multiprocessing.” https://docs.python.org/3/library/multiprocessing.html.

[42] Python, “concurrent.futures.” https://docs.python.org/3/library/concurrent.futures.
html.

[43] CloudButton Consortium, “CloudButton Toolkit implementation for IBM Cloud Functions and
IBM Cloud Object Storage.” https://github.com/pywren/pywren-ibm-cloud.

[44] Cloudbutton team, “Cloudbutton Toolkit.” https://github.com/cloudbutton.

[45] “Amazon Lambda:.” https://aws.amazon.com/lambda/, 2020.

[46] “AWS Batch:.” https://aws.amazon.com/batch/, 2022.

[47] “Google Cloud Functions:.” https://cloud.google.com/functions, 2020.

[48] “Google Cloud Run:.” https://cloud.google.com/run, 2022.

[49] “Azure Functions:.” https://azure.microsoft.com/en-us/services/functions/, 2020.

[50] Lithops, “Lithopscloud cli.” https://github.com/lithops-cloud/lithopscloud, 2022.

[51] CloudButton Consortium, “Deliverable D4.3: Full implementation of the BLOSSOM middle-
ware.”

[52] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and D. Lewin, “Consistent Hash-
ing and Random Trees: Distributed Caching Protocols for Relieving Hot Spots on the World
Wide Web,” in 29th Annual ACM Symposium on Theory of Computing, STOC, 1997.

[53] A. Lakshman and P. Malik, “Cassandra: a decentralized structured storage system,” SIGOPS
Oper. Syst. Rev., vol. 44, Apr. 2010.

[54] J. M. Hellerstein, J. M. Faleiro, J. Gonzalez, J. Schleier-Smith, V. Sreekanti, A. Tumanov, and
C. Wu, “Serverless computing: One step forward, two steps back,” in CIDR 2019, 9th Biennial
Conference on Innovative Data Systems Research, Asilomar, CA, USA, January 13-16, 2019,
Online Proceedings, 2019.

[55] The JPype Project, “JPype.” https://github.com/jpype-project/jpype.

[56] “The crucial project - github.” https://github.com/crucial-project, 2020.

[57] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman, D. Gohman, L. Wagner, A. Za-
kai, and J. Bastien, “Bringing the Web up to Speed with WebAssembly,” ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), 2017.

[58] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy, S. Okasaka, N. Narula, and
N. Fullagar, “Native Client: A Sandbox for Portable, Untrusted x86 Native Code,” in IEEE
Symposium on Security and Privacy, 2009.

Page 52 of 54

https://www.ray.io
https://docs.python.org/3/library/multiprocessing.html
https://docs.python.org/3/library/concurrent.futures.html
https://docs.python.org/3/library/concurrent.futures.html
https://github.com/pywren/pywren-ibm-cloud
https://github.com/cloudbutton
https://github.com/lithops-cloud/lithopscloud
https://doi.org/10.1145/258533.258660
https://doi.org/10.1145/258533.258660
https://doi.org/10.1145/258533.258660
https://github.com/jpype-project/jpype
https://github.com/crucial-project

H2020 825184 RIA
03/07/2022 CloudButton

[59] Asmjs.org, “asm.js.” http://asmjs.org/.

[60] S. Shillaker and P. Pietzuch, “Faasm: Lightweight isolation for efficient stateful serverless com-
puting,” in USENIX Annual Technical Conference (USENIX ATC), USENIX Association, 2020.

[61] A. Hall and U. Ramachandran, “An execution model for serverless functions at the edge,” in
Proceedings of the International Conference on Internet of Things Design and Implementation,
2019.

[62] R. Gurdeep Singh and C. Scholliers, “Warduino: A dynamic webassembly virtual machine
for programming microcontrollers,” in Proceedings of the 16th ACM SIGPLAN International
Conference on Managed Programming Languages and Runtimes, MPLR 2019, Association for
Computing Machinery, 2019.

[63] Fastly, “Terrarium.” https://wasm.fastlylabs.com/, 2020.

[64] Microsoft Research, “Krustlet.” https://deislabs.io/posts/introducing-krustlet/.

[65] WebAssembly, “WebAssembly Specification.” https://github.com/WebAssembly/spec/,
2020.

[66] C. Watt, “Mechanising and Verifying the WebAssembly Specification,” in ACM SIGPLAN
International Conference on Certified Programs and Proofs, 2018.

[67] W. Fu, R. Lin, and D. Inge, “TaintAssembly: Taint-Based Information Flow Control Tracking
for WebAssembly,” arXiv preprint arXiv:1802.01050, 2018.

[68] D. Lehmann and M. Pradel, “Wasabi: A Framework for Dynamically Analyzing WebAssem-
bly,” in ACM International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2019.

[69] LLVM Project, “LLVM 9 Release Notes.” https://releases.llvm.org/9.0.0/docs/
ReleaseNotes.html, 2020.

[70] Assemblyscript, “AssemblyScript.” https://github.com/AssemblyScript/assemblyscript,
2020.

[71] SwiftWasm, “SwiftWasm.” https://swiftwasm.org/.

[72] A. Andreev, “TeaVM.” http://www.teavm.org/, 2020.

[73] WebAssembly Working Group, “Roadmap.” https://webassembly.org/roadmap/, 2022.

[74] Bytecode Alliance, “WebAssembly Binary Toolkit.” https://github.com/WebAssembly/wabt,
2022.

[75] WebAssembly, “WebAssembly Dynamic Linking.” https://webassembly.org/docs/
dynamic-linking/, 2020.

[76] C. Reference, “The C++ language.” https://en.cppreference.com/w/cpp/language, 2022.

[77] LLVM Project, “LLVM Compiler Infrastructure.” https://llvm.org/docs/, 2020.

[78] L. Project, “Clang: a C language family front-end for LLVM.” https://clang.llvm.org/, 2022.

[79] The Rust Language, “Rust Toolchains.” https://rust-lang.github.io/rustup/concepts/
toolchains.html, 2020.

[80] Google, “The Go Programming Language.” https://go.dev/, 2020.

Page 53 of 54

http://asmjs.org/
https://wasm.fastlylabs.com/
https://deislabs.io/posts/introducing-krustlet/
https://github.com/WebAssembly/spec/
https://releases.llvm.org/9.0.0/docs/ReleaseNotes.html
https://releases.llvm.org/9.0.0/docs/ReleaseNotes.html
https://github.com/AssemblyScript/assemblyscript
https://swiftwasm.org/
http://www.teavm.org/
https://webassembly.org/roadmap/
https://github.com/WebAssembly/wabt
https://webassembly.org/docs/dynamic-linking/
https://webassembly.org/docs/dynamic-linking/
https://en.cppreference.com/w/cpp/language
https://llvm.org/docs/
https://clang.llvm.org/
https://rust-lang.github.io/rustup/concepts/toolchains.html
https://rust-lang.github.io/rustup/concepts/toolchains.html
https://go.dev/

H2020 825184 RIA
03/07/2022 CloudButton

[81] Bytecode Alliance, “WASI: WebAssembly System Interface.” https://wasi.dev/, 2022.

[82] A. Scheidecker, “WAVM.” https://github.com/WAVM/WAVM, 2020.

[83] Bytecode Alliance, “The WebAssembly Micro Runtime.” https://github.com/
bytecodealliance/wasm-micro-runtime, 2020.

[84] Bytecode Alliance, “Wasmtime.” https://wasmtime.dev/, 2020.

[85] Google, “V8 Engine.” https://github.com/v8/v8, 2020.

[86] Mozilla, “SpiderMonkey.” https://developer.mozilla.org/en-US/docs/Mozilla/
Projects/SpiderMonkey.

[87] Microsoft, “ChakraCore.” https://github.com/microsoft/ChakraCore.

[88] Apple, “WebKit.” https://webkit.org/.

[89] Bytecode Alliance, “The Bytecode Alliance.” https://bytecodealliance.org/, 2022.

[90] Bytecode Alliance, “WASI Design Principles.” https://github.com/WebAssembly/WASI/blob/
main/docs/DesignPrinciples.md, 2020.

[91] C. Watt, A. Rossberg, and J. Pichon-Pharabod, “Weakening WebAssembly,” Proceedings of the
ACM on Programming Languages (PACMPL), 2019.

[92] CloudButton Consortium, “Deliverable D5.2: CloudButton Prototype of Abstractions, Fault-
tolerance and Porting Tools.”

[93] Faasm Contributors, “High-performance stateful serverless runtime based on WebAssembly.”
https://github.com/faasm/faasm, 2021.

[94] Faasm Contributors, “Tools for building C/C++ to WebAssembly for Faasm.” https://
github.com/faasm/cpp, 2021.

[95] The Knative Authors, “Knative - Enterprise-grade Serverless on your own terms..” https://
knative.dev/docs/, 2021.

[96] The Linux Foundation, “Kubernetes.” https://kubernetes.io/, 2020.

[97] LSDS Group, “Faasm Lithops Fork.” https://github.com/faasm/lithops, 2020.

[98] LSDS Group, “Faasm Python Support.” https://github.com/faasm/python, 2020.

[99] LSDS Group, “Faasm Python Documentation.” https://github.com/faasm/faasm/blob/
main/docs/source/python.md, 2020.

[100] LSDS Group, “Faasm C/C++ Support.” https://github.com/faasm/cpp, 2020.

[101] P. G. Lopez, A. Arjona, J. Sampe, A. Slominski, and L. Villard, “Triggerflow: Trigger-based or-
chestration of serverless workflows,” in Proceedings of the 14th ACM International Conference
on Distributed and Event-based Systems, DEBS 2020, ACM, 2020.

[102] Lithops, “Lithops applications.” https://github.com/lithops-cloud/applications, 2022.

Page 54 of 54

https://wasi.dev/
https://github.com/WAVM/WAVM
https://github.com/bytecodealliance/wasm-micro-runtime
https://github.com/bytecodealliance/wasm-micro-runtime
https://wasmtime.dev/
https://github.com/v8/v8
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
https://github.com/microsoft/ChakraCore
https://webkit.org/
https://bytecodealliance.org/
https://github.com/WebAssembly/WASI/blob/main/docs/DesignPrinciples.md
https://github.com/WebAssembly/WASI/blob/main/docs/DesignPrinciples.md
https://github.com/faasm/faasm
https://github.com/faasm/cpp
https://github.com/faasm/cpp
https://knative.dev/docs/
https://knative.dev/docs/
https://kubernetes.io/
https://github.com/faasm/lithops
https://github.com/faasm/python
https://github.com/faasm/faasm/blob/main/docs/source/python.md
https://github.com/faasm/faasm/blob/main/docs/source/python.md
https://github.com/faasm/cpp
https://github.com/lithops-cloud/applications

	Executive summary
	Motivation and Background
	Serverless Computing Overview
	Beyond the Current Serverless Development Experience
	Hybrid Cloud
	Performance Acceleration
	Overall Objectives

	State of the Art
	Workflow orchestrates
	Serverless beyond Function as a Service

	Final design and Implementation of the Serverless Compute Engine for Big Data
	Lithops general architecture and design
	No vendor lock-in and multi cloud portability
	Multiple APIs
	Futures API
	Multiprocessing API
	Storage API
	Storage OS API

	Multiple Storage backends and Big Data processing
	Data discovery and data partitioner

	Serverless without limits
	Localhost execution mode
	Serverless execution mode
	Standalone execution mode

	Serverless without constraints and hybrid workloads
	LithopsCloud CLI tool
	Temporary data
	CloudObject to share results and maintain state
	Cost effective serverless model for Big Data analytics

	Lithops in the broad scope of CloudButton
	Crucial
	Overview
	Integration with Lithops

	WebAssembly
	Format
	Linear memory
	Toolchains and runtimes
	WASI: the WebAssembly system interface
	Future WebAssembly development

	C++ - Faasm
	Faasm integration with Lithops
	Integration with RedHat and Infinispan

	Serverless Workflows
	Triggerflow
	Apache Airflow

	SLA Monitoring and Management
	Rational behind the CloudButtonSLA component
	Lithops and CloudButtonSLA integration
	Lithops metrics
	PromSQL queries
	CloudButton agreements and Swagger API
	Integration with Lithops through Rabbit queue
	Prometheus Pushgateway Violation notification
	A full sample of context
	CloudButtonSLA cost control panel in Grafana

	Predicted metrics with Prometheus holt_winters and predictor_linear

	Summary, conclusions and the next steps
	Applications
	Adoption of the platform by 3rd party developers
	Next steps

