
HORIZON 2020 FRAMEWORK PROGRAMME

CloudButton
(grant agreement No 825184)

Serverless Data Analytics Platform

D3.2 Serverless Compute Engine Design and Prototypes

Due date of deliverable: 30-06-2020
Actual submission date: 04-08-2020

Start date of project: 01-01-2019 Duration: 36 months

Summary of the document

Document Type Report

Dissemination level Public

State v1.0

Number of pages 45

WP/Task related to this document WP3 / T3.1, T3.2, T3.3, T3.4

WP/Task responsible IBM

Leader Gil Vernik, David Breitgand (IBM)

Technical Manager Peter Pietzuch (Imperial)

Quality Manager Josep Sampé (URV)

Author(s) Gil Vernik, David Breitgand, Omer Belhasin, Josep Sampe,
Gerard París, Pedro García, Rut Palmero

Partner(s) Contributing IBM, URV, ATOS

Document ID CloudButton_D3.2_Public.pdf

Abstract This document describes our progress with the architec-
ture design and initial prototypical implementation of the
CloudButton platform for data intensive computations.

Keywords FaaS, serverless, Kubernetes, hybrid cloud, workflow or-
chestration, data intensive computations, SLA monitoring.

History of changes

Version Date Author Summary of changes

0.1 18-06-2020 Gil Vernik (IBM) Table of Contents

0.2 19-06-2020 Rut Palmero
(ATOS)

SLA monitoring and management

0.3 22-06-2020 Josep Sampé
(URV)

Executors

0.4 02-07-2020 Gerard París
(URV)

Geospatial use case evaluation

0.5 13-07-2020 Gerard París
(URV), Pedro
García (URV)

Section on Triggerflow and cost-efficiency evaluation

0.6 16-07-2020 David Breitgand
(IBM)

Section on serverless workflows (ArgoNotes)

1.0 04-08-2020 Gil Vernik (IBM) Final version.

H2020 825184 RIA
04/08/2020 CloudButton

Table of Contents

1 Executive summary 2

2 Motivation and Background 4
2.1 Serverless Computing Overview . 4
2.2 Beyond the Current Serverless Development Experience 5
2.3 Hybrid Cloud . 6
2.4 Performance Acceleration . 7
2.5 Overall Objectives . 7

3 State of the Art 8
3.1 Workflow orchestrates . 8

4 Design and Implementation 10
4.1 CloudButton Toolkit general architecture and design 10
4.2 Multiple APIs . 13
4.3 Executors . 13

4.3.1 Local executor . 13
4.3.2 Docker executor . 13
4.3.3 Apache OpenWhisk executor . 13
4.3.4 IBM Cloud Function executor . 14
4.3.5 Knative executor . 14

4.4 Temporary data . 14
4.5 CloudObject . 14
4.6 Sorting and shuffle . 15
4.7 Integration with Infinispan . 16
4.8 Serverless Workflows . 17

4.8.1 ArgoNotes . 17
4.8.2 Triggerflow . 25

5 SLA Monitoring and Management 27
5.1 CloudButton QoS metrics selection . 28
5.2 Prometheus CloudButton-SLA Monitor . 31
5.3 RabbitMQ CloudButton-SLA Notifier . 33
5.4 Future Actions . 33

6 Initial evaluation 34
6.1 EMBL use case . 34

6.1.1 Enablement to process any size datasets and databases 34
6.1.2 Imaging mass spectrometry application with CloudButton 35
6.1.3 Mol DB processing . 35
6.1.4 Dataset processing . 37
6.1.5 Dataset partitioning . 37
6.1.6 Mol DB partitioning . 37
6.1.7 Molecular search . 38

6.2 Geospatial Use Case . 39
6.3 Cost-efficiency . 39

i

H2020 825184 RIA
04/08/2020 CloudButton

List of Abbreviations and Acronyms

ADF Azure Durable Functions

API Application programming interface

ASF Amazon Step Functions

CD Continued Development

CLI Command-line interface

CNCF Cloud Native Computing Foundation

COS Cloud Object Storage

CPU Central Processing Unit

CRC Custom Resource Controller

CRD Custom Resource Definition

DAG Directed Acyclic Graph

DSL Domain Specific Lanaguage

ETL Extract, Transform, Load

FaaS Function as a Service

FDR False Discovery Rate

GPU Graphics Processor Unit

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

ICT Information and Communication Technology

JSON JavaScript Object Notation

K8s Kubernetes

PaaS Platform as a Service

QoS Quality of Service

REST Representational State Transfer

SDK Software Development Kit

SLA Service Layer Agreement

SLO Service Layer Objective

SOTA State of the art

UI User interface

VM Virtual Machine

YAML YAML Ain’t Markup Language

Page 1 of 45

H2020 825184 RIA
04/08/2020 CloudButton

1 Executive summary
Cloud-native transformation is happening in the field of data intensive computations. At the core
of this transformation, there is a microservices architecture with container (e.g., Docker) and con-
tainer orchestrating (e.g., Kubernetes) technologies powering up the microservices approach. One of
the most important recent developments in the cloud-native movement is "serverless" (also known
as Function-as-a-Service (FaaS)) computing. FaaS holds two main promises for data intensive com-
putations: (a) massive just in time parallelism at a fraction of the cost of an always-on sequential
processing and (b) lower barriers for developers who need to focus only on their code and not on the
details of the code deployment.

To fully leverage FaaS potential for the data intensive computations, a simplified consumption
model is required, so that a data scientist, who is not familiar with the cloud computing details in
general and FaaS in particular, could seamlessly leverage FaaS from her program written in a high
level programming language, such as Python.

Nowadays data is not located in one physical place in an enterprise. Rather, data is distributed
over a number of clusters in a private cloud with some data and other resources being in the public
cloud(s). This gives the rise to the architectural approach known as hybrid cloud. In this approach data
and computational resources are federated over a number of clusters/clouds, so that logically they
can be accessed in a uniform and cost-efficient way. The peculiarities of the hybrid cloud should be
transparent to the data scientist who works at the higher level of abstraction, treating the federation
as something that can be accessed and used as a "whole".

Modern intensive data computations take form of complex workflows. Usually, these workflows
are not limited to serverless computations, but include multiple parallel and sequential steps across
the hybrid cloud, where the flow of control is driven through events of different nature. Serverless
computations are ephemeral by nature, but flows require state and complement serverless compu-
tations in this respect. It is paramount that the flows designed by the data scientists allow to glue
together serverless and "serverfull" functionalities. We refer to this model as "servermix".

To support the servermix model cost-efficiently in the hybrid cloud, a number of challenges per-
taining to portability, flexibility, and agility of a servermix computational engine should be solved.

This document describes our progress with the architecture design and initial prototypical imple-
mentation of the CloudButton platform for data intensive computations. The CloudButton platform
comprises five main parts:

• CloudButton Toolkit (we also term this component "Execution Engine"): a developer/data
scientist facing component (a client environment) that executes functionality expressed in a
high level programming language, such as Python, transparently leveraging parallelism of
serverless as part of the data intensive computational workflows through submitting jobs to
the CloudButton Core;

• CloudButton Core (we also term this component "Compute Engine"): high performance
Compute Engine optimized for running massively parallel data intensive computations and
orchestrating them as a part of the stateful data science related workflows. This component
implements scheduling logic, multitenancy, workflow orchestrations, and SLA management;

• Backend serverless (i.e., FaaS) Framework: this is a pluggable component that can have many
implementations (e.g., public cloud vendor serverless offering, Kubernetes serverless frame-
work, a standalone serverless solution, etc.)

• Persistent Storage Service: this is a pluggable component that is provided independently from
the CloudButton Toolkit and CloudButton Core (e.g., Cloud Object Storage (COS))

• Caching Service: this is another independently deployed component providing caching ser-
vices to the CloudButton Core (e.g., Infinispan [1]).

Page 2 of 45

H2020 825184 RIA
04/08/2020 CloudButton

In this specification, we focus on the first two functional components. We start from a brief in-
troduction of the main concepts and programming paradigms involved in our solution in Section 2.
Next we briefly describe SOTA in Section 3 and proceed to laying out the architecture of the Cloud-
Button Toolkit and CloudButton Core and their interplay. The architecture follows a cloud-native
microservices based approach.

In Section 4 we describe our initial prototypical implementation illustrated by its application to
one of the use cases. We take a step-wise agile approach for implementing the overall architec-
ture. Hence our current initial prototype is a first Minimal Viable Product (MVP) that allows us to
start experimentation, bottleneck analysis and accumulation of the hand-on experience with the use
cases. The initial prototype demonstrates how the public cloud services can be leveraged in the pro-
posed architecture. Specifically, the prototype uses IBM Cloud Functions [2] as a serverless backend
framework, and IBM Cloud Storage (COS) [3] as storage backend. The resulting prototype is made
available publicly as PyWren over IBM Cloud Functions and IBM Cloud Object Storage project [4].

Page 3 of 45

H2020 825184 RIA
04/08/2020 CloudButton

2 Motivation and Background

Figure 1: Serverless Taxonomy

2.1 Serverless Computing Overview

The serverless programming model, also known as Function-as-a-Service (FaaS1) has gained consid-
erable momentum since its introduction in 2014 [5]. The term serverless is somewhat misleading.
The term does not imply that no servers are involved in running an application. Rather it hints at
a level of abstraction, which allows to ignore deployment details (e.g., servers configuration and
maintenance) and focus exclusively on the application code. Figure 1 positions FaaS on the spectrum
of programming models. FaaS can be viewed as a specialized Platform-as-a-Service (PaaS) taking
care of all deployment and run-time issues and relieving the developer from any concerns related to
server provisioning and maintenance.

There are several main principles pertaining to FaaS, which are universally applied across a vari-
ety of implementations:

• A unit of execution is a function written in a high-level programming language;

• A function is executed in response to an event (which also can be an HTTP call);

• Rules and triggers can be defined to bind functions and events together, so FaaS is an intrinsi-
cally event driven programming model;

• A customer is charged only for the resources used during the function execution (at a very fine
granularity: typically, being on the order of 100 ms);

• Functions are transparently auto-scaled horizontally to be instantaneously elastic: i.e., the load
balancer is built into a platform and new functions are started in response to events as needed.
Some system limits, such as maximum number of simultaneous invocations per user and invo-
cations/sec per user are usually enforced in FaaS implementations;

• Functions are ephemeral (i.e., stateless)2

1It can be argued that FaaS pertains to delivering serverless computations as a metered and billed cloud service to the
customers. In this document we will use the terms serverless and FaaS interchangeably unless this results in a confusion.

2FaaS extensions, such as AWS Step Functions [6] and Azure Durable Functions [7] allow to maintain state in the
serverless computations. The mechanisms used in these solutions are fairly different. The former implements long running
state machines and the latter uses event scoping.

Page 4 of 45

H2020 825184 RIA
04/08/2020 CloudButton

• Functions can be chained with the output of one action being the input of another;

• Functions can be orchestrated to execute in complex application topologies3

• There is no server administration or provisioning;

• Users typically have to select a function flavor (i.e., amount of memory and CPU – unless allo-
cated proportionally to memory by default) upon the function deployment;

• Functions can execute both synchronously and asynchronously.

Serverless computing is a very attractive choice for big data computations, where data paral-
lelism exists since it offers tremendous potential for ease-of-use, instantaneous scalability and cost
effectiveness providing low cost access to hundreds and thousands of CPUs, on demand, with little
or no setup.

To illustrate this point, consider a geospatial use case of CloudButton. A satellite image object can
be partitioned into sub-images and a separate function can be assigned to process each sub-image
(e.g., apply object classification model on a sub-image). These functions can be run in parallel as a
single map step. For the details of the CloudButton use cases and how they render themselves to
serverless computing see deliverable D2.1.

2.2 Beyond the Current Serverless Development Experience

A basic FaaS development cycle is as follows. A developer writes a function using her favorite text
editor. Then she creates the function (i.e., register it in the platform’s data base) using a CLI or a Web
based GUI. Upon creation the function receives a name, by which it can be bound to event triggers
and rules that cause function invocation in response to the events represented by the triggers.

The reader is referred to IBM Cloud Functions tutorial [2] and Apache OpenWhisk community
resources [13] for a detailed step by step examples of serverless programming with Apache Open-
Whisk, as a typical example of the serverless programming experience

In their inspirational paper [14], the authors observed that even this apparently simple develop-
ment cycle is too complicated for most scientists who prefer focusing on their domain rather than on
mastering a new programming paradigm. This complexity prevents the scientists from leveraging
the advantages of the serverless computing.

Data scientists need a flexible environment where they can run their simulations while not wor-
rying about resources that the simulations may require. While serverless is the right solution to make
e.g., AI flows more efficient — many potential users are unsure of what is involved and required to
make this happen in their scientific applications. Simplifying development experience by provide
data scientists with the "push to the cloud" functionality is the primary goal of the CloudButton
project. To this end, we focus on how to connect an existing code and frameworks to serverless with-
out the painful process of starting from scratch, redesigning applications or learning new skills. Since
serverless computing provides great benefit for HPC workloads (e.g., embarrassingly parallel Monte
Carlo simulations), Big Data analytics and AI frameworks, it is important to make sure that users can
easily integrate serverless with the frameworks and programming languages of their choice.

Furthermore, in the real world big data applications, the applications are rarely a single compu-
tational step, which can be reduced to a serverless function call or a number of calls performed in a
loop (parallelism). Rather than that, typical big data analytics involves multiple steps that should be
coordinated and orchestrated seamlessly. Consuming serverless computations from a cloud (either
centralized or hybrid) is ultimately an exercise in distributed computing. And distributed computing
is notoriously hard. In most cases, it is totally out of the data scientist skills to develop an efficient
and robust code for orchestrating distributed serverless computation.

3The orchestrators are typically external to the FaaS frameworks. Apache Composer [8] is an exception, since it allows
to execute a function composition as it was a function in Apache OpenWhisk. Important examples of the orchestrating
technology include Airflow [9], Kubeflow [10], Argo Flows [11], Fission Workflows [12]. We performed evaluation of some
of these technologies towards their possible use in the CloudButton platform and will discuss some of them later on in this
document.

Page 5 of 45

H2020 825184 RIA
04/08/2020 CloudButton

As a simple example, consider face alignment in facial recognition workloads. The process of
aligning an image is fairly straightforward and can be done using the Dlib library [15] and its face
landmark predictor. Only a few lines of Python code are required to apply the face landmark predic-
tor to preprocess a single image. However, processing millions of images stored in the cloud (e.g., in
the Cloud Object Storage (COS), a massively used cost-efficient storage solution both for structured
and unstructured data), is far from trivial.

To start with, a lot of boilerplate code is required to deal with locating the images inside COS
and accessing them for read and write. Next, there should be code dealing with data partitioning,
function invocations, collection of the results, restarting of failed functions, traffic shaping (i.e., ad-
hering to the system limits, such as functions/sec rate), and informing the next computational stage
in a pipeline about the results of the current one when it finishes. In addition, some external services
might be required to complete different computational tasks and pass information.

This brings the notions of the servermix workflows, workflow orchestration, and their integration
with serverless to the forefront, making them of critical importance for data intensive pipelines4.

In the system we envision, a data scientist develops her code in a high level language such as
Python (as it was before), the code is automatically translated into a DAG of tasks and these tasks
are being executed on a backend FaaS system with all the boilerplate functionality pertaining to the
workflow orchestration executing transparently. The data scientist will be able to provide scheduling
hints to the system specifying the target FaaS service of her choice and SLO pertaining parameters.

2.3 Hybrid Cloud

As some recent studies show [16], enterprises have unique requirements to cloud computing, which
prevents many of the enterprise workloads to be seamlessly moved to the public cloud. As we go to
press, it is estimated that on average only 20% of the enterprise workloads are currently in the cloud,
with 80% still being on premises. For the enterprises the cloud does not mean a traditional centralized
cloud anymore. To start with, even a traditional "centralized" cloud is actually a distributed one with
multiple geographically disparate regions and availability zones and and enterprise data scattered
among them. Moreover, nowadays, most enterprises use multi-cloud strategy for their ICT [17] with
each cloud being distributed. On the private cloud side, even a medium size enterprise has more
than one compute cluster today and more than one storage location and the computations should be
pertained in a distributed manner across these clusters and data silos. The public and private cloud
usage trends culminate in enterprises engaging in the hybrid cloud deployments with multiple multi-
regional public clouds and multi-cluster private cloud federated together in some form allowing
concerted workload execution.

With the hybrid cloud model on the rise, enterprises face a number of non-trivial challenges with
arguably the most compelling one being portability. To allow for portability applications have to be
developed in a certain way known as cloud-native [18], which make them ready for cloud deploy-
ment in the first place (among other features cloud-nativeness implies containerization of the appli-
cation components). Another necessary condition is cloud agnosticism in the control plane related
to supporting the DevOps cycle of the application. To this end, a number of container orchestrator
have been tried by the cloud software development community over the last few years [19, 20, 21]
with CNCF’s Kubernetes (K8s) [21] being a market leader today.

K8s provides PaaS for declarative management of containers. Containerized cloud-native appli-
cations are seamlessly portable across K8s clusters that can also be federated. Thus, K8s becomes a
de-facto standard for the enterprise hybrid PaaS.

In the K8s environment, serverless functions are essentially pods (a unit of scheduling in K8s)
executing containers with potentially multiple containers per pod, where the higher level of abstrac-
tion, which is a "function", is provided by some developer facing shim to insulate the developers
from the low level K8s APIs.

A number of serverless platforms and building blocks as well as K8s native workflow manage-
4We discuss servermix model at length in Deliverable D2.1 in the context of the CloudButton use cases and overall

platform architecture.

Page 6 of 45

H2020 825184 RIA
04/08/2020 CloudButton

ment frameworks have appeared recently. We will briefly review the more important of them in the
next section. In addition, K8s provides mature frameworks for service meshes, monitoring, network-
ing, and federation. An important feature of K8s is its extensibility. Through the Custom Resource
Definition (CRD) and Custom Resource Controller (CRC) mechanisms, K8s can be extended with ad-
ditional resources (originally non-K8s) that are added to the control plane and managed by the K8s
API. This mechanism is used by "K8s native" workflow management tools, such as Argo [11] and
Kubeflow [10] to manage complex workflows in a federated K8s environment.

As an intermediate summary, the servermix workflows in the K8s based hybrid cloud boils down
to orchestrating pods. K8s is an event-driven management system and its scheduling mechanism in-
cludes hooks for extension. This is helpful in our approach to developing the CloudButton platform,
because it allows to add smartness to e.g., scheduling decisions taken by K8s w.r.t. pods comprising
a workflow.

2.4 Performance Acceleration

Originally, serverless use cases were focusing on event driven processing. For example, an image is
uploaded to the object storage, an event is generated as a result that automatically invokes serverless
function which generates a thumbnail. As serverless computing become mainstream, more use cases
start benefiting from the serverless programming paradigm. However, current serverless models are
all stateless and do not have any innate caching capabilities to cache frequently access data. In the
CloudButton project, we will explore the benefit of a caching layer and how it can improve server-
less workflows. The data shipping model permeates serverless architectures in public, private, and
hybrid clouds alike and gravely affecting their performance.

Consider a user function that takes input data and applies an ML model, stored in the object
storage. Executing this function at a massive scale as a serverless computation against various data
sets will require each invocation to use the same exact ML model. However, if there no caching
used, each function will have to read the model from the remote storage each time it runs, which
is both expensive and slow. Having a cache layer will enable to store ML model in the cache, as
opposite to each invocation try to get the same model from some shared storage, like object storage.
Metabolomics use case has various level of caching, where they store molecular databases. Likewise,
in the Geospatial pipelines, there are multiple opportunities for improving performance through
caching.

In CloudButton, we plan to explore the tradeoffs between the local per-node cache, such as
Plasma Object Storage (from Apache Arrow) [22] and cluster based caching, such as Infinispan [1],
and develop an architecture that would be able to accommodate the two approaches and balance
between them for cost-efficiency and performance improvements.

2.5 Overall Objectives

From examining the hybrid cloud features, it is easy to see that in order to be able to cater for the mul-
tiple deployment options, and therefore aim at maximum traction with the community, the Cloud-
Button platform should be cloud-native itself, because this approach is highly modular and exten-
sible and allows to gradually build an ecosystem around CloudButton. Indeed, as we explain in
Section 4, we follow the cloud-native microservices based approach to the CloudButton architecture.

In general, we simultaneously target two different approaches predicated on the level of con-
trol of the backend FaaS framework used to execute serverless workloads. In case of the public
cloud, this control is limited, which reduces CloudButton scheduling to relatively simple algorithms
(mostly focusing on pooling capacity across clouds and/or cloud regions) with no ability to guaran-
tee SLO/SLA for the workloads, but rather resorting to general improvements, such as caching to
improve overall performance of the platform. In case of the K8s hybrid cloud based deployment, the
level of control is much higher and the CloudButton components related to scheduling and SLA/SLO
enforcement can be much more sophisticated. To capture these different approaches within the same
architecture, we define APIs for the services that will implement them and provide different "plug-
ins" suitable for different deployment constellations, thus also opening a door for third party FaaS

Page 7 of 45

H2020 825184 RIA
04/08/2020 CloudButton

backend plugins, schedulers, orchestrators, runtime systems, user facing clients, etc.
From the exploitation perspective, we aim at creating at least two levels for the project: a light

weight "community edition" with only minimal functionality that would be suitable to run relatively
small workloads by a single user and an "enterprise edition" aiming at multi-tenant, production-
worthy deployments.

3 State of the Art

3.1 Workflow orchestrates

FaaS is based on the event-driven programming model. In fact, many event-driven abstractions like
triggers, Event Condition Action (ECA) and even composite event detection were already inspired
by the veteran Active Database Systems [23].

Event-based triggering has also been extensively employed in the past to provide reactive coor-
dination of distributed systems [24, 25]. Event-based mechanisms and triggers have also been exten-
sively used [26, 27, 28, 29] in the past to build workflows and orchestration systems. The ECA model
including trigger and rules fits nicely to define the transitions of finite state machines representing
workflows. In [30], they propose to use synchronous aggregation triggers to coordinate massively
parallel data processing jobs.

An interesting related work is [29]. They leverage composite subscriptions in content-based
publish/subscribe systems to provide decentralized Event-based Workflow Management. Their
PADRES system supports parallelization, alternation, sequence, and repetition compositions thanks
to content-based subscriptions in a Composite Subscription Language.

More recently, a relevant article [31] has surveyed the intersections of the Complex Event Process-
ing (CEP) and Business Process Management (BPM) communities. They clearly present the existing
challenges to combine both models and describe recent efforts in this area. We outline that our paper
is in line with their challenge “Executing business processes via CEP rules", and our novelty here is
our serverless reactive and extensible architecture.

In serverless settings, the more relevant related work aiming to provide reactive orchestration
of serverless functions is the Serverless trilemma [32] from IBM. In their paper, the authors advo-
cate for reactive run-time support for function orchestration, and present a solution for sequential
compositions on top of Apache OpenWhisk.

A plethora of academic works are proposing different so-called serverless orchestration systems
like [33, 34, 35, 36, 37, 38]. However, most of them rely on non-serverless services like VMs or dedi-
cated resources, or they use functions calling functions patterns which complicate their architectures
and fault tolerance. None of them offer extensible trigger abstractions to build different schedulers.

All Cloud providers are now offering cloud orchestration and function composition services like
IBM Composer, Amazon Step Functions, Azure Durable Functions, or Google Cloud Composer.

IBM Composer service is in principle designed for short-running synchronous composition of
serverless functions. IBM Composer generates a state machine representation of the workflow to
be executed with IBM Cloud Functions. It can represent sequences, conditional branching, loops,
parallel, and map tasks. However, fork/join synchronization (map, parallel) blocks on an external
user-provided Redis service, limiting their applicabillity to short running tasks.

Amazon offers two main services: Amazon Step Functions (ASF) and Amazon Step Functions
Express Workflows (ASFE). The Amazon States Language (based on JSON) permits to model task
transitions, choices, waits, parallel, and maps in a standard way. ASF is a fault-tolerant managed
service designed to support long-running workflows and ASFE is designed for short-running (less
than five minutes) highly intensive workloads with relaxed fault-tolerance.

Microsoft’s Azure Durable Functions (ADF) represents workflows as code using C# or Javascript,
leveraging async/await constructs and using event sourcing to replay workflows that have been
suspended. ADF does not support map jobs explicitly, and only includes a Task.whenAll abstraction
enabling fork/join patterns for a group of asynchronous tasks.

Google offers Google Cloud Composer service leveraging a managed Apache Airflow cluster.
Airflow represents workflows in a DAG (Directed Acyclic Graph) coded in Python, so that it cannot

Page 8 of 45

H2020 825184 RIA
04/08/2020 CloudButton

support cycles. It is not ideally suited for parallel jobs or high-volume workflows, and it is not
designed for orchestrating serverless functions.

Two previous papers [39, 40] have compared public FaaS orchestration services for coordinating
massively parallel workloads. In those studies, IBM Composer offered the fastest performance and
reduced overheads to execute map jobs whereas ASF or ADF imposed considerable overheads. We
will also show in this paper how ASFE obtains good performance for parallel workloads.

None of the existing cloud orchestration services is offering an open and extensible trigger-based
API enabling the creation of custom workflow engines. Our work on Triggerflow tries to fill this
gap, offering a tool to implement existing models like ASF or Airflow DAGs with reactive schedulers
leveraging Knative standard technologies.

Page 9 of 45

H2020 825184 RIA
04/08/2020 CloudButton

4 Design and Implementation
Find below a figure showing CloudButton High Level Architecture, from D3.1[41].

Figure 2: CloudButton High Level Architecture.

4.1 CloudButton Toolkit general architecture and design

The CloudButton toolkit is a multicloud framework that enables the transparent execution of unmod-
ified, regular Python code against disaggregated cloud resources. With the CloudButton toolkit, there
is no new API to learn. It provides the same API as Python’s standard multiprocessing [42] and
concurrent.futures [43] and PyWren-IBM [4] libraries. Any program built on top of these libraries
can be run on any of the major serverless computing offerings in today’s market. This minimizes
the learning curve for knowledgeable Python developers, keeps interfaces simple and consistent,
and provides access transparency to disaggregated storage and memory in the cloud. Further, its
multicloud-agnostic architecture ensures portability and overcomes vendor lock-in. Altogether, this
represents a significant step forward in the programmability of the cloud. The CloudButton toolkit
enables transparent access for users to virtually unbounded multicloud resources as nothing more
than writing a program with a familiar language.

The initial prototype of the CloudButton Toolkit was designed to work with IBM Cloud Func-
tions [2] FaaS platform to run MapReduce tasks as serverless functions, compositions of functions,
etc., and IBM Cloud Object Storage (IBM COS) to store all internal data required to make cloudbut-
ton working. IBM Cloud Functions, which is based on Apache OpenWhisk, is a public cloud FaaS
platform for running functions in response to events while IBM COS is IBM’s public cloud offering
for unstructured data storage service designed for durability, resiliency and security.

Page 10 of 45

H2020 825184 RIA
04/08/2020 CloudButton

Currently, the cloudbutton toolkit is completely refactored, and it now integrates what we called
Compute and Storage abstractions. These two abstractions allow to integrate in our architecture any
compute and storage service beyond IBM Cloud Functions, hiding its underlying vendor-specific
implementations with common high-level methods. Thus, the cloudbutton toolkit can be now iden-
tified as extensible and multicloud. For example, as of today, it already supports all the compute
and storage backends listed in Table 1.

Cloud Compute backend Storage backend

IBM IBM Cloud Functions IBM COS

Amazon
AWS Lambda

AWS Fargate
AWS S3

Google
Cloud Functions

Cloud Run
Google Storage

Microsoft Azure Functions Azure Blob Storage

Alibaba Function Compute Alibaba OSS

Generic Knative, KEDA Swift, Ceph, Redis

Table 1: Cloudbutton toolkit backends

multiprocessing concurrent.futures

 Cloudbutton Toolkit Engine

High level Python API

Storage
backend

Function & data Invocation

Results Compute
backend

Executor

Serializer Invoker

Figure 3: High level representation of the Cloudbutton toolkit

The high-level architecture is depicted in Figure 3. Internally, the Cloudbutton toolkit engine ex-
ploits the Python’s dynamism to transparently capture the user’s function and dependencies, pack-
age them, and upload them to the cloud. It is worth to note that the user’s functions are not directly
deployed in the serverless compute backend. Instead, they are stored in the storage backend. Then,
the Cloudbutton toolkit deploys a generic function called Agent responsible to lookup the packaged
code and dependencies and run them. The usage of a function’s Agent removes the overhead for
function registration, favors the reuse of the single registered function in order to mitigate cold starts,
and allows to run user-defined functions. At the same time, it eliminates the majority of hindering

Page 11 of 45

H2020 825184 RIA
04/08/2020 CloudButton

barriers about deployment, packaging and task execution that inhibit most users from painlessly
entering the cloud.

In our effort to create a transparent and extensible framework, the Cloudbutton toolkit is built
following a plugin-oriented model. To do so, we created the compute and storage abstractions in
our architecture. These abstractions hide the underlying complexities of each compute and storage
service, at the same time that they allow any new serverless compute and storage service to be easily
integrable in our framework at later stage.

Another key component of the architecture is the runtime. The runtime is the place where the
functions are executed. It can take different forms depending of the Serverless compute backend, for
example, from Docker containers to python virtual environments packaged into a zip file. In any
case, it contains the Cloudbutton Agent as the main entry point. Thus, the runtime with the Agent
is deployed as a single generic function in the serverless compute backend. In this way, during
the execution of a multiprocessing application, the Cloudbutton engine orchestrates the serverless
compute backend to invoke, at large scale, the necessary Agent functions, each one representing one
parallel process. Then, each function receives a json payload indicating where the user function’s
code and dependencies are stored, the data to be processed, and the place to store the final results.

The Cloudbutton toolkit offers much more flexibility in contrast of other tools. It allows to con-
figure function memory in runtime, configure the desired number of workers for each application,
and much more. Moreover, it includes a fault-tolerant mechanism that allows to run a job until
completion, even if a function failed the execution of a single task. To summarize, the Cloudbut-
ton toolkit can be viewed as a multicloud, large scale, executor engine, capable of running any local
multiprocessing-based Python code in any Cloud. It is currently open-sourced in github [44].

One core principle behind CloudButton is programming simplicity. For this reason, we have
devoted extra efforts to integrate CloudButton Toolkit with other tools (e.g., Python notebooks such
as Jupyter), which are very popular environments for the scientific community. Python notebooks
are interactive computational environments, in which one can combine code execution, rich text,
mathematics, plots and rich media.

Our current CloudButton toolkit implementation contains an initial Partitioner implementation,
which supports the following input data types

• Arrays of any type, e.g., numbers, lists of URLs, nested arrays, etc. A default partitioning
logic is to partition the work allocating each entry in the array as input to a separate serverless
function. As a consequence there will number of serverless tasks as the length of the input
array, where each invocation process a single entry from the input array.

• A list of the data objects;

• A list of URLs, each pointing to a data object;

• A list of object storage bucket names;

• A bucket name with a prefix to filter out only the relevant objects from the bucket.

Data discovery is process that is automatically started when the bucket names are specified as an input.
The data discovery process consists of a HEAD request over each bucket to obtain the necessary
information to create the required data for the execution. The naive approach is to partition a bucket
at the granularity of the data objects, resulting in the mapping of a single data object per serverless
function.

This approach may lead to suboptimal performance and resource depletion. Consider an object
storage bucket with two CSV files, one being 10GB and another one being 10MB in size. If Cloud-
Button would partition the bucket by objects, this will lead to one serverless action processing 10GB
and another one processing 10MB, which is obviously not optimized and may lead to running out of
resource available to the invocation.

Page 12 of 45

H2020 825184 RIA
04/08/2020 CloudButton

To overcome this problem, our Partitioner also is designed to partition data objects by sharding
them into smaller chunks. Thus, if the chunk size is 64MB, then Partitioner will generate the number
of partitions which is equal to the object size divided by the chunk size.

Upon completing the data discovery process, Partitioner assigns each partition to a function ex-
ecutor, which applies the map function to the data partition, and finally writes the output to the IBM
COS service. Partitioner then executes the reduce function. The reduce function will wait for all the
partial results before processing them.

4.2 Multiple APIs

CloudButton toolkit exposes different APIs that can be used based on the user requirements. In D5.1
we presented a first API definition based on map-reduce. Now, the flexibility of the Cloudbutton
toolkit is substantially increased by mimicking the Python’s multiprocessing API and components.

The Map-Reduce API is the basic API used by the Cloudbutton Toolkit, and it integrates the basic,
low-level methods to spawn functions in the cloud. The primary object in the Map-Reduce API of the
Cloudbutton toolkit is the FunctionExecutor, that provides the following API methods: call_async,
map, map_reduce, wait and get_result.

As an addition to the previous API, CloudButton toolkit now supports most of the Python multiprocessing
abstractions, such as the Process, Pool, Queue, Pipe, Lock, Semaphore, Event, Barrier, and also remote
memory in Manager objects. This means that most of the current multiprocessing-based applications
can be moved and scaled to the cloud by only changing the import statement of the script.

Both APIs are further described in D5.2 CloudButton Prototype of Abstractions, Fault-tolerance and
Porting Tools [45].

4.3 Executors

4.3.1 Local executor

The local executor is the basic executor in the Cloudbutton toolkit, and it allows to run applications
by using local processes. It is mainly designed for testing purposes as it does not need any Cloud to
be configured to make it running. By default, the local executor uses a local storage interface, which
is the faster option. However, it can also use any public storage backend such as the IBM Cloud
Object Storage service.

4.3.2 Docker executor

Docker is a tool designed to make it easier to create, deploy, and run applications by using containers.
Containers allow a developer to package up an application with all of the parts it needs, such as
libraries and other dependencies, and deploy it as one package. By doing so, thanks to the container,
the developer can rest assured that the application will run on any other Linux machine regardless of
any customized settings that machine might have that could differ from the machine used for writing
and testing the code.

In the cloudbutton toolkit, the deocker executor allows to run functions using processes within
a single docker container. In this way, a user can create a specific runtime with all the requirements
libraries and packages instead of having to install all of them in the local machine. A stated before,
this container is portable and can be executed in any other machine. In this sense, The docker execu-
tor can be used to run functions both locally or in an other remote server/VM. Currently, the docker
executor supports both knative and Openwhisk/IBM Cloud functions runtimes. this means that a
user can re-use these runtimes to run function in the locally machine without having to install any
package.

4.3.3 Apache OpenWhisk executor

Apache OpenWhisk is an open source and serverless cloud platform that performs functions in re-
sponse to events. The platform uses a function as a service (FaaS) model to manage infrastructure and
servers for cloud-based applications and servers. OpenWhisk removes concerns about management
of infrastructure and scaling by using Docker containers.

Page 13 of 45

H2020 825184 RIA
04/08/2020 CloudButton

In the cloudbutton toolkit, the Apache OpenWhisk executor allows to execute functions in any
vanilla OpenWhisk installation by comunicating with its endpoint API. At the same time, the execu-
tor provides all the necessary methods to build custom runtimes, abstracting and hiding its complex-
ities to the users.

4.3.4 IBM Cloud Function executor

The IBM Cloud Function executor is an extension of the Apache OpenWhisk executor and allow to
execute functions in the IBM Cloud Functions service by using IBM-specific authentication methods.

4.3.5 Knative executor

Knative is a serverless framework that is based on Kubernetes. One important goal of Knative is to
establish a cloud-native and cross-platform orchestration standard. Knative implements this server-
less standard through integrating the creation of container or function, workload management and
auto scaling, and event models. In the cloudbutton toolkit, the Knative executor allows to run func-
tions in any knative deployment. It also allows to build and deploy docker runtimes to execute the
functions.

4.4 Temporary data

Temporary data is a special kind of data that only required between different stages during the ex-
ecution process while at certain point this data need to be cleaned. The cleaning process may be
automatically invoked or can manually triggered manually by user actions. In CloudButton we ad-
dress two types of temporary data
System generated is type of data that generated internally by the CloudButton toolkit. The process
usually not visible to the end user and he is not aware of this type of data. As example CloudBut-
ton Toolkit generates a single JSON file 4 per each invocation. This file includes invocation status,
completion timestamp, and other metadata that is needed by CloudButton toolkit. Once all invoca-
tion completed, Cloudbutton toolkit reads all generated files, obtain statuses of each invocation and
decides what response return to the user.

Figure 4: Status JSON file

User generated This type of temporary data is usually implicitly generated by the user. As exam-
ple, analytic job may consists of various stages, where output of one stage is used as in input to the
consequence stage. In this scenario, application needs implicitly persist intermediate data between
stages. It’s then user responsibility to invoke cleanup of the temporal data. To enable the capability
we designed and implemented CloudObject which is special type of data that can be used to share
data between stages.

4.5 CloudObject

We noticed that data sharing in variery of use cases is essential because each serverless job is memory
limited and also run in an isolated environment. Dealing this challenge naively would be manually
define unique storage keys for each object, but we found that this approach can be confusing and
even quite messy when applying parallel jobs - it requires to configure keys prefixes for each task
and also developing dedicated indexing logic for each one. Trying to make the code clearer and
cleaner, we defined a generic user-friendly class called “CloudObject” which contains all required

Page 14 of 45

H2020 825184 RIA
04/08/2020 CloudButton

details to reach the storage object that it represents. For example, when processing several serverless
jobs in parallel, we can simple store CloudObjects as follows: By this approach, the CloudObject

Figure 5: CloudObject

can be considered as a pointer to the stored data, without the necessity of managing its storage path
exactly, and the CloudButton Toolkit can encapsulate code that manages the storage service instance.
We use CloudObjects as part of an external storage system that was developed to store intermediate
pipeline results and load each result when needed. By this approach, the user can automatically
load these intermediate results if they have already been calculated before and avoid recomputation.
After finishing all pipeline analytics, the user can clean its cache easily.

4.6 Sorting and shuffle

As part of the serverless limitations challenges to implement a serverless pipeline for metabolites de-
tection task, we encountered in a challenge of a simple operation - sorting data. The whole preprocess
for the main searching process is composed by 3 sorting logics points. Dealing this challenge naively
(load the whole data and sort it in the same process) isn’t matched for a serverless approach because
of the duration and memory limitations of each worker. moreover, we also can’t use a naive sorting
logic in the local machine cause there could be variety of datas that can’t be fitted into local mem-
ory. Therefore, external chunks-wise sorting algorithms are required to deal with this challenge like
the well known “merge-sort” and “quick-sort” or even dedicated memory-wise algorithms that sort
carefully without reaching beyond a memory consumption limit. However, using these algorithms
sequentially in the same process can take a lot of time and if we apply parallelism, the processes
will still be limited by the available memory, compute resources and network performance. Utilising
serverless capabilities, we implemented a sorting algorithm (for data located in a storage service)
that stores an ordered sequence of data partitions such that each partition is associated with unique
ranged values and its size is memory bounded. The framework is built to support in massive paral-
lelism appliance under memory and time constrains and also to be cost-efficient as possible regarding
serverless limitations by fitting each serverless job with maximum memory available for its function.
Diving into the framework implementation, it contains a preprocess part and two main stages. Firstly,
the algorithm predefines data values ranges by sampling the data, each values range defines a data
partition that will include these values - let “M” be the number of ranges. The algorithm ensures that
the ranged values will be estimated memory bounded by the sampled distribution. Secondly, the al-
gorithm launches parallel serverless jobs to partition memory bounded data chunks - let “N” be the
number of chunks. Each job divides a given data chunk into data sub- segments such that each sub-
segment includes data values out of several predefined ranges (up to the maximum possible memory
size which can be fitted into the serverless job) - Let “C” be the number of sub-segments of each job.
At last, the algorithm launches another C parallel serverless jobs to merge sub-segments of different
chunks that includes values out of same ranges. Each job also divides the resulted merged segment

Page 15 of 45

H2020 825184 RIA
04/08/2020 CloudButton

Figure 6: Data partitioning into ranges

into sub-segments again such that the total number of sub-segments out of all parallel processes will
be M. The algorithm correctness comes from the fact that each parallel job (first and second stage)
consumes maximum allowed memory so it will use minimum required serverless workers number:
N parallel jobs and then C parallel jobs (cost-efficient). In addition, it is guaranteed that each job
won’t reach beyond a memory limit: in the first stage the memory consumption depends on each
memory bounded data chunks and in the second stage, it is guaranteed that each N sub- segments to
merge are memory bounded in estimate due to the sampling part. This framework is also designed
to use the storage service efficiently as possible. During this processes, N*C intermediate storage
objects are created because serverless jobs are isolated from each other. The algorithm tunes N and
C such that it will be the minimum number required for each serverless job to work. By this way,
it reduces significantly the number of intermediate storage objects and also the number of storage
parallel requests: N parallel storage requests in the first stage, and N*C parallel storage requests in
the second stage.

4.7 Integration with Infinispan

Red Hat Data Grid is an in-memory, distributed, elastic NoSQL key-value datastore. Data Grid is
built from the Infinispan open-source software project and is available to deploy as an embedded
library, as a standalone server, or as a containerized application on Red Hat OpenShift Container
Platform. Based on the configuration, Infinispan may persist data in persistent storage or keep it
in the memory only. This makes Infinspan as a perfect candidate for storing temporary data. We
designed CloudButton Toolkit so that all internal accesses to storage pass via internal-storage inter-
face. This modular approach, allows us to use different storage connectors to access different storage
backends. To extend CloudButton Toolkit to access additional storage backend, all what is required
is to implement internal-storage interface and configure CloudButton Toolkit to use new storage. We
implemented Infinispan storage connector prototype that internally implements Infinispan RESTfull
API to enable access to the remote Infinispan cluster. A simple configuration is required to leverage
Infinispan as internal storage of CloudButton Toolkit

#infinispan:
#username : <USER_NAME>
#password : <PASSWORD>
#endpoint : <INFINISPAN_SERVER_URL:PORT>
#cache_manager : <CACHE MANAGER> # Optional. ’default’ in default value

This enabled to use Infinispan as in memory storage to store temporary metadata generated by
CloudButton Toolkit and avoids to use cloud object storage to store temporary data. There are numer-
ous benefits of this approach in particular reducing overall costs, achieving low latency to Inifnispan

Page 16 of 45

H2020 825184 RIA
04/08/2020 CloudButton

which greatly improves overall execution times. As next steps we plan to benchmark architecture of
using Infinispan and better understand the cost efficiency of this approach.

4.8 Serverless Workflows

4.8.1 ArgoNotes

CloudButton caters for a typical scenario, when a data scientist needs to execute a lengthy analytical
pipeline in an unattended mode. Usually, a data scientist uses a notebook, such as Jupiter notebook
to perform the analytic computations. The control flow of a notebook is usually sequential, even
though it is possible to create more complex dependencies among the cells of a notebook. After a
data scientist debugs and fine tunes her computations (this fine tuning might include the level of
parallelism, the timeout values, the number of retries, etc.), she might wish to save her notebook and
possibly share it with the rest of the team. The latter part is very important, because different data
sets are being produced by different members of the team (and perhaps even by different teams) and
computations might involve multiple data sets. For example a satellite and a LIDAR data sets can be
independently processed and then the results can be combined to produce an annotated map, which
in turn would be treated as a new data set for some additional analytics. We refer to this event-driven
process as big data serveless analytic pipelines.

One notbook can be imported into another notebook. In Jupiter Notebooks, a notebook can be
imported as a module 5. Therefore a general structure of the computation is a Directed Acyclic Graph
(DAG) rather than a sequence. In the example above, a Sattelite data set and a LiDAR data sets
can be processed in parallel, because there are no dependencies between them. The annotated map
computation can only start after these two tasks (regarded as dependencies) are completed.

Once a notebook is debugged and fine tuned it can be reused to handle similar data, when a new
instance of that data becomes available. Moreover, since the notebook is already prepared, no human
attendance is required to execute it. We differentiate between two basic situations that might trigger
a pipeline execution:

• Manual submission event of a notebook to CloudButton: this is equivalent of the "push-to-the-
cloud" concept that PyWren-IBM execution framework provides for a single python function,
generalized to a multi-step, inter-dependent computations;

• An event-driven automated execution of the pipeline: a data life cycle management event, such
as a data set arrival to a data store, a data set departure, update, etc. Usually, these life cycle
management events are associated with an overarching data lake architecture, that sets up a
framework of the data scientists’ work. Serverless technology is being used widely to imple-
ment such architectures6. An implementation of the data lake and its associated interfaces is out
of the scope for this project. However, it is important to keep consider this as a background for
possible industrial exploitation of the CloudButton results, since the CloudButtons ArgoNotes
mechanism can be seamlessly connected to a data lake architecture, such as IBM Cloud Data
Lake7 and we plan to explore this opportunity as part of our exploitation road map.

To achieve portability of our serverless pipelines orchestration mechanism, ArgoNotes, we use
Argo Workflows8, a CNCF9 hosted project and Argo Events10, a CNCF landscape project. The Argo
Workflow project is container native Kubernetes workflow engine. It follows the Kubernetes Oper-
ator software design pattern. The Operator comprises a Custom Resource Definition (CRD), which
is a schema for the yaml documents, called Custom Resources (CRs) and a Controller. When CR
is applied to the Kubernetes API Server, a Controller, which is watching workflow CRs executes as
reconciliation cycle, in which it continously tries to bring the observed state of the workflow to it its

5https://jupyter-notebook.readthedocs.io/en/stable/examples/Notebook/Importing%20Notebooks.html
6https://aws.amazon.com/training/course-descriptions/serverless-datalake/
7https://www.ibm.com/cloud/architecture/architectures/cloud-data-lake
8https://github.com/argoproj/argo
9https://www.cncf.io/

10https://github.com/argoproj/argo-events

Page 17 of 45

https://aws.amazon.com/training/course-descriptions/serverless-datalake/
https://www.ibm.com/cloud/architecture/architectures/cloud-data-lake

H2020 825184 RIA
04/08/2020 CloudButton

desired state (i.e., to execute all its steps according to dependencies specified in the CR). Each step in
Argo Workflow is a pod executing in Kubernetes. Argo Workflow offers a very rich set of features
that allows to specify arbitrary complex flows.

Kubernetes has become a de facto standard for container orchestration, with all major cloud ven-
dors offering it as a service. Also, Kubernetes has became a platform of choice for the private cloud.
Being Kubernetes native, Argo Workflows and Argo Events offer portability out of the box.

Argo Events is Kubernetes native event dependency resoulution system that is designed to work
seamlessly with Argo workflows. Argo Events offers a rich collection of event sources. These sources
are termed Gateways. a Gateway receives an event and passed it to another entity called Sensor. The
sensor then triggers any Kubernetes resource (including Argo Workflow), if an event dependency
is satisfied. Both Gateway and Sensor instances are CRs managed by their respective Gateway and
Sensors controllers. The CRs are defined according to the Gateway and Sensor CRD respectively.

Listing 1 shows the Argo Workflow CR (a yaml document that describes the workflow), which
is obtained automatically from the EMBL use case notebook. The workflow CR definition comprises
two main constructs: steps and templates. Steps (and dependencies among them) correspond to the
computational tasks. The templates describe the executable images that back these tasks.

Each step of an Argo workflow is a pod in Kubernetes. Therefore it is being possible to obtain
metrics related to each step execution using native metering, monitoring, and visualisation tools of
Kubernetes, such as Prometheus and Grafana. The execution of the workflows is being monitored
by the SLA Monitoring and Management tools (See Section 5) that use these native Kubernetes mon-
itoring and metering instrumentation.

The data scientist is never exposed to this level of details. Rather, we’ve implemented a custom
exporter11 to automatically create an Argo Workflow from the Jupiter Notebook.

Our goal is to relieve the data scientist from learning new programming paradigms and minimize
the use of auxiliary tools that she needs to use in order to execute her computations. In the true
spirit of serverless computing that promises to relieve a developer from the low level details of the
execution environment, allowing her to focus only on the business logic of her code.

To that end we utilize a standard tagging mechanism of Jupiter Notebooks. The tagging allows to
allocate the notebook cells to steps and templates. Tags are part of the general metadata mechanism
in Jupiter Notebooks. Using metadata, dependencies among cells (e.g., cells that import different
notebooks) to specify a DAG, can be specified. A simple example of tagging is shown in Figure 7.
This tagging effectively creates the Argo Workflow CR shown in Listing 1. There are two templates
and two steps in this workflow: prepare and process. But they could have been named differently
as well. The cells with the same name are allocated to the same templates. In the EMBL use case,
the templates are created out of Python code, because the notebook comprises PyWren computa-
tions only. However, in a more general case, the workflow can comprise arbitrary steps that can be
serverless or serverful, massively parallel or sequential. We term this model Servermix [46].

Figure 8 shows Argo GUI that allow to trace a workflow progress. The goal of ArgoNotes is to
take all the boilerplate code related to orchestration out of the way of the data scientist. Therefore,
as explained above, a human attendance is not required to execute a serverless pipeline. Yet, a data
scientist or an operator can check the progress of the flow at any time. As shown in Figure 9, a
detailed log is available for every step. This information is retained by Argo also for the flows that
have terminated. It can be deleted when a flow is purged from Kubernetes.

1
2 apiVersion: argoproj.io/v1alpha1
3 kind: Workflow
4 metadata:
5 generateName: dag -steps -
6 spec:
7 entrypoint: steps
8 templates:
9 - dag:

11
11https://nbconvert.readthedocs.io/en/latest/externa_exporters.html

Page 18 of 45

H2020 825184 RIA
04/08/2020 CloudButton

10 tasks:
12 - arguments: {}
13 dependencies: []
14 name: prepare
15 template: prepare
16 - arguments: {}
17 dependencies:
18 - prepare
19 name: process
20 template: process
21 name: steps
22 - inputs:
23 parameters:
24 - name: data
25 value: ’[]’
26 name: prepare
27 script:
28 command:
29 - python
30 env:
31 - name: PYWREN_CONFIG
32 value: |-
33 {"ibm": {"iam_api_key": "7hlUkZvvZMDkx85h5ek9tVysE6XoGsKj7KT9KgUVLTNv"}, "

ibm_cf": {"endpoint": "https ://us -east.functions.cloud.ibm.com", "
namespace": "washns", "namespace_id": "2f5f6183 -fac7 -4f57 -89b1 -099
c9132702d"}, "ibm_cos": {"endpoint": "https ://s3.us-east.cloud -object -
storage.appdomain.cloud", "private_endpoint": "https ://s3.private.us-
east.cloud -object -storage.appdomain.cloud", "access_key": "
c98b17b8084b4cd9a9a1638a8992f9a5", "secret_key": "69
a86f9be05f5993195270e015aabe8cf78ce4ba7fb04cb5"}, "pywren": {"
storage_bucket": "embl -bucket", "runtime": "kpavel/my -runtime:cf2", "
include_modules": ["annotation_pipeline"], "workers": 256}, "storage":
{"ds_bucket": "kpmybucket42", "db_bucket": "kpmybucket42", "
output_bucket": "kpmybucket42"}}

34 image: artifactory.haifa.ibm.com :5130/ kpavel/pywren -annotation -pipeline :0.1
35 name: prepare
36 source: |-
37 # Display IBM PyWren version
38
39 import pywren_ibm_cloud as pywren
40
41 pywren.__version__
42
43 import json
44
45 #config = json.load(open(’config.json’))
46
47 import os
48
49 config = json.loads(os.environ.get(’PYWREN_CONFIG ’, ’’))
50 import json
51
52 #input_config = json.load(open(’metabolomics/input_config_small.json’))
53
54 #input_config = json.load(open(’metabolomics/input_config_big.json’))
55
56 #input_config = json.load(open(’metabolomics/input_config_huge.json’))
57
58 #input_config = json.load(open(’metabolomics/input_config_huge2.json’))
59
60 #input_config = json.load(open(’metabolomics/input_config_huge3.json’))
61
62 input_config = json.load(open(’input_config.json’))
63

Page 19 of 45

H2020 825184 RIA
04/08/2020 CloudButton

64 input_config_ds = input_config[’dataset ’]
65
66 input_config_db = input_config[’molecular_db ’]
67
68 # Please note that some input_configs specify a ‘mol_db6 ‘, which is not yet

publicly available.
69
70 # This will remove it from the config to prevent later errors. Results will

still be generated for other databases.
71
72 input_config_db[’databases ’] = [db for db in input_config_db[’databases ’] if

’mol_db6 ’ not in db]
73 from annotation_pipeline.molecular_db import build_database ,

calculate_centroids , upload_mol_dbs_from_dir
74 # Upload molecular databases into IBM COS
75
76 upload_mol_dbs_from_dir(config , config[’storage ’][’db_bucket ’], ’metabolomics

/db’, ’metabolomics/db’)
77 # Generate formulas dataframes into IBM COS
78
79 num_formulas , num_formulas_chunks = build_database(config , input_config_db)
80
81 num_formulas , num_formulas_chunks
82 # Generate isotopic peaks dataframes into IBM COS
83
84 polarity = input_config_ds[’polarity ’] # Use ’+’ if missing from the config ,

but it’s better to get the actual value as it affects the results
85
86 isocalc_sigma = input_config_ds[’isocalc_sigma ’] # Use 0.001238 if missing

from the config , but it’s better to get the actual value as it affects
the results

87
88 num_centroids , num_centroids_chunks = calculate_centroids(config ,

input_config_db , polarity , isocalc_sigma)
89
90 num_centroids , num_centroids_chunks
91 - inputs:
92 parameters:
93 - name: data
94 value: ’[]’
95 name: process
96 script:
97 command:
98 - python
99 env:

100 - name: PYWREN_CONFIG
101 value: |-
102 {"ibm": {"iam_api_key": "7hlUkZvvZMDkx85h5ek9tVysE6XoGsKj7KT9KgUVLTNv"}, "

ibm_cf": {"endpoint": "https ://us -east.functions.cloud.ibm.com", "
namespace": "washns", "namespace_id": "2f5f6183 -fac7 -4f57 -89b1 -099
c9132702d"}, "ibm_cos": {"endpoint": "https ://s3.us-east.cloud -object -
storage.appdomain.cloud", "private_endpoint": "https ://s3.private.us-
east.cloud -object -storage.appdomain.cloud", "access_key": "redacted", "
secret_key": "redacted"}, "pywren": {"storage_bucket": "embl -bucket", "
runtime": "kpavel/my -runtime:cf2", "include_modules": ["
annotation_pipeline"], "workers": 256}, "storage": {"ds_bucket": "
kpmybucket42", "db_bucket": "kpmybucket42", "output_bucket": "
kpmybucket42"}}

103 image: artifactory.haifa.ibm.com :5130/ kpavel/pywren -annotation -pipeline :0.1
104 name: process
105 source: |-
106 # Display IBM PyWren version
107
108 import pywren_ibm_cloud as pywren

Page 20 of 45

H2020 825184 RIA
04/08/2020 CloudButton

109
110 pywren.__version__
111
112 import json
113
114 #config = json.load(open(’config.json’))
115
116 import os
117
118 config = json.loads(os.environ.get(’PYWREN_CONFIG ’, ’’))
119 import json
120
121 #input_config = json.load(open(’metabolomics/input_config_small.json’))
122
123 #input_config = json.load(open(’metabolomics/input_config_big.json’))
124
125 #input_config = json.load(open(’metabolomics/input_config_huge.json’))
126
127 #input_config = json.load(open(’metabolomics/input_config_huge2.json’))
128
129 #input_config = json.load(open(’metabolomics/input_config_huge3.json’))
130
131 input_config = json.load(open(’input_config.json’))
132
133 input_config_ds = input_config[’dataset ’]
134
135 input_config_db = input_config[’molecular_db ’]
136
137 # Please note that some input_configs specify a ‘mol_db6 ‘, which is not yet

publicly available.
138
139 # This will remove it from the config to prevent later errors. Results will

still be generated for other databases.
140
141 input_config_db[’databases ’] = [db for db in input_config_db[’databases ’] if

’mol_db6 ’ not in db]
142 from annotation_pipeline.pipeline import Pipeline
143
144 pipeline = Pipeline(config , input_config)
145 # Load the dataset ’s parser
146
147 pipeline.load_ds ()
148 # Parse dataset chunks into IBM COS
149
150 pipeline.split_ds ()
151 # Sort dataset chunks to ordered dataset segments
152
153 pipeline.segment_ds ()
154 # Sort database chunks to ordered database segments
155
156 pipeline.segment_centroids ()
157 # Annotate the molecular database over the dataset by creating images into

IBM COS
158
159 pipeline.annotate ()
160 # Discover expected false annotations by FDR (False -Discovery -Rate)
161
162 pipeline.run_fdr ()
163 # Display statistic results
164
165 results_df = pipeline.get_results ()
166
167 results_df

Page 21 of 45

H2020 825184 RIA
04/08/2020 CloudButton

168 status: {}

Listing 1: EMBL Use Case as Argo Workflow

Figure 7: Tagging of a Jupiter Notebook to automatically obtain an Argo Workflow definition

Figure 8: Using Argo GUI the progress of a flow can be inspected at any time (also for the completed
flows)

Figure 10 depicts the overall ArgoNotes architecture. A data scientist commits a pipeline to a Ar-
goNotes (Step 1), when she is happy with her notebook and wishes to reuse and share it. The note-
book is automatically translated by the custom external exporter into Argo artifacts that comprise

Page 22 of 45

H2020 825184 RIA
04/08/2020 CloudButton

Figure 9: Detailed logs of the flow can be expected (also for the completed flows)

Figure 10: ArgoNotes High Level Architecture

three Custom Resource definitions: Gateway CR, Sensor CR, and Workflow CR. Gateway, Sensor,
and Workflow controllers are preinstalled on Kubernetes that can be located anywhere. These three
controllers represent the control plane of ArgoNotes serverless pipelines.

At some point (not shown on the figure) the pipeline should be bootstrapped. More specifically,
CRs for the Gateway and Sensor should be applied. The Gateway and Sensor controllers watch these
CRs and at this point, the pipeline is ready for operation. At some point in time (Step 2) either the
data scientist or an automation create a Job Descriptor on a message bus that represents an event

Page 23 of 45

H2020 825184 RIA
04/08/2020 CloudButton

that should be handled by the pipeline. This event is caught by the Gateway controller (Step 3) that
passes it to the Sensor controller (Step 4), which (in accordance with the event dependency encoded
in a CR that it watches), applies a Workflow CR, i.e., triggers it, agains the Kubernetes Master (Step 5).
This creates a Workflow CR instance that triggers a reconciliation cycle in the Workflow Controller
that watches Workflow CR instances. At this point, the Workflow Controller starts a workflow on
Kubernetes (the Kubernetes cluster where the actual execution of a workflow happens, does not
have to be the same one as where the control plane of the workflow runs). Steps in the flow are pods
that can execute any computation. In particular, they can execute PyWren computations against
IBM Cloud Functions as the executor backend or against KNative executor backend in the same or
a different Kubernetes cluster. Throughut the execution of the workflow, its context (i.e., its state is
being checkpointed on a non-volatile storage and possibly cached in main memory). The last task
of the workflow posts the status of the workflow execution on the message bus. The data scientist
can inspect the results at any time asynchronously using Job Descriptor to read from an appropriate
topic.

As we go to press the main building blocks of ArgoNotes stateful serverless orchestrator pow-
ering complex big data analytics have been implemented. An integration of these basic blocks and
tighter integration with the rest of CloudButtin components will be performed in the next reporting
period.

Page 24 of 45

H2020 825184 RIA
04/08/2020 CloudButton

4.8.2 Triggerflow

In the context of the CloudButton project, we have created Triggerflow [47], a novel building block
for composing event-based services. Triggerflow aims to leverage existing event routing technology
(Knative Eventing) to enable extensible trigger-based orchestration of serverless workflows. Trigger-
flow includes advanced abstractions not present in Knative Eventing like dynamic triggers, trigger
interception, custom filters, termination events, and a shared context among others. Some of these
novel services may be adopted in the future by event routing services to make it easier to compose,
stream, and orchestrate tasks.

We can see in Figure 11 an overall diagram of the Triggerflow Architecture. The Trigger service
follows an extensible Event-ConditionAction architecture. The service can receive events from dif-
ferent Event Sources in the Cloud (Kafka, RabbitMQ, Object Storage, timers). It can execute different
types of Actions (containers, Functions, VMs). And it can also enable the creation of custom fil-
ters or Conditions from third-parties. The Trigger service also provides a shared persistent context
repository providing durability and fault tolerance. Figure 11 also shows the basic API exposed by
TriggerFlow: createWorkflow initializes the context for a given workflow, addTrigger adds a new
trigger (including event, conditions, actions, and context), addEventSource permits the creation of
new event sources, and getState obtains the current state associated to a given trigger or workflow.
Different applications and schedulers can benefit from serverless awakening and rich triggering by
using this API to build different orchestration services like Airflow-like DAGs, ASF state machines
or Workflow as Code clients like PyWren.

Trigger service worker

RESTful
API

createWorkflow

addEventSource

addTrigger

getContext

Persistent
Storage

EventSource
Subscribers KafkaSource RedisStreamsSource SQSSource

Worker Event Sink

Global Context

Triggers

Match activation event with trigger

Event-Trigger
Processing

Condition

Trigger
Context

Action

Update
State /

checkpoint

Commit
Event

[true]

Google Composer-like
DAGs Interface

Amazon Step
Functions Interface

PyWren imperative
Interface

User defined container or
default Python functions

Events

Figure 11: Triggerflow Architecture

This proposed architecture must support a number of design goals:

1. Support for Heterogeneous Workflows: The main idea is to build a generic building block for
different types of schedulers. The system should support enterprise workflows based on Finite
State Machines, Directed Acyclic Graphs, and Workflow as Code systems.

2. Extensibility and Computational Reflection: The system must be extensible enough to support
the creation of novel workflow systems with special requirements like specialized scientific
workflows. The system must support introspection and interception mechanisms enabling the
monitoring and optimization of existing workflows.

3. Serverless design: The system must be reactive, and only execute logic in response to events,

Page 25 of 45

H2020 825184 RIA
04/08/2020 CloudButton

like state transitions. Serverless design also entails pay per use, flexible scaling, and depend-
ability.

4. Performance: The system should support high-volume workloads like data analytics pipelines
with numerous parallel tasks. The system should exhibit low overheads for both short-running
and long-running workflows.

Our proposal is to design a purely event-driven and reactive architecture for workflow orches-
tration. Like previous works [26, 27, 28], we also propose to handle state transitions using event-
based triggering mechanisms. The novelty of Triggerflow approach precisely relies on the afore-
mentioned design goals: support for heterogeneous workflows, extensibility, serverless design, and
performance for high volume workloads.

We follow an Event Condition Action architecture in which triggers (active rules) define which
action must be launched in response to Events or to Conditions evaluated over one or more Events.
The system must be extensible at all levels: Events, Conditions, and Actions.

We have developed two different implementations of Triggerflow: one over Knative, which fol-
lows a push-based mechanism to pass the events from the event source to the appropriate worker,
and another one using Kubernetes Event-driven Autoscaling (KEDA), where the worker follows a
pull-based mechanism to retrieve the events directly from the event source. We created the proto-
types on top of the IBM Cloud infrastructure, leveraging the services in its catalog to deploy the
different components of our architecture. These components are the following:

• A Front-end RESTful API, where a user connects to interact with Triggerflow.

• A Database, responsible for storing workflow information, such as triggers, context, etc.

• A Controller, responsible for creating the workflow workers in Kubernetes.

• The workflow workers (TF-Worker hereafter), responsible for processing the events by check-
ing the triggers’ conditions, and applying the actions.

In our implementation, each workflow has its own TF-Worker. In other words, the scalability of
the system is provided at workflow-level and not at TF-Worker level. In our system, the events are
logically grouped in what we call workflows. The workflow abstraction is useful, for example, to
differentiate and isolate the events from multiple workflows, allowing to share a common context
among the (related) events.

To demonstrate the flexibility that can be achieved using triggers with programmable condi-
tions and actions, we have implemented three different workflow models that use Triggerflow as
the underlying serverless and scalable workflow orchestrator: based on State Machines (Amazon
Step Functions), Directed Acyclic Graphs (Airflow), and Workflow as Code (PyWren for IBM Cloud).

We showcase here the Workflow as Code use case. The trigger service is also useful to reac-
tively invoke an external scheduler because of state changes caused by some condition. For example,
Workflow as Code systems like PyWren or Azure Durable Functions represent state transitions as
asynchronous function calls (async/await) inside code written in Python or C#. Asynchronous in-
vocations and futures in PyWren or async/await calls in Azure Durable Functions simplify code so
developers can write synchronous-like code that suspends and continues when events arrive.

The model supported by Azure Durable Functions is reactive and event-based, and it relies on
event sourcing to restart the function to its current state. We can use dynamic triggers to support
external schedulers like Durable Functions that suspend their execution until the next event arrives.

In PyWren API, the functions call_async and map are used to invoke one or many functions.
PyWren code is executed normally in a notebook in the client, which is usually adequate for short
running workflows. But what if we want to execute a long-running workflow with PyWren in a re-
active way? The solution is to run this PyWren code in Triggerflow reacting to events. Here, prior to

Page 26 of 45

H2020 825184 RIA
04/08/2020 CloudButton

perform any invocation, PyWren can register the appropriate triggers, for example a function termi-
nation trigger in call_async function and an aggregate trigger for all functions in a map invocation.

After trigger registration for each function, the function can be invoked and the orchestrator func-
tion could decide to suspend itself. It will be later activated when the trigger fires.

To ensure that the PyWren code can be restarted and continue from the last point, we use event
sourcing. When the orchestrator code is launched, an event sourcing action will re-run the code
acquiring the results of functions from termination events. It will then be able to continue from the
last point.

Trigger
Condition:

Join

PyWren code

Termination
Events

map()

call_async() Events
Already

invoked?

Asynchronous invoke

Continue
execution

Add dynamic
trigger

[Yes]

[No]

Stop
execution

Trigger Action:
Replay event
sourcing code Serverless

Function

Start execution

Figure 12: Life cycle of an event sourcing-enabled workflow as code with IBM-PyWren as external
scheduler

In our system prototype, the event sourcing is implemented in two different ways: native and
external scheduler.

In the native scheduler, the orchestration code is executed inside a Triggerflow Action. Our Trig-
gerflow system enables then to upload the entire orchestration code as an action that interacts with
triggers in the system. When Triggerflow detects events that match a trigger, it awakens the native
action. This code then relies on event sourcing to catch up with the correct state before continuing
the execution. In the native scheduler, the events can be retrieved efficiently from the context and
thus accelerate the replay process. If no events are received in a period, the action will be scaled to
zero. This guarantees reactive execution of event sourced code.

In the external scheduler, we use IBM PyWren [4], where the orchestration code is run in an external
system, like a Cloud Function. Then, thanks to our Triggerflow service, the function can stop its
execution each time it invokes for example a map(), recovering their state (event sourcing) when it
is awaken by our TF-Worker once all map() function activations finished their execution. Moreover,
to use our event sourcing version of PyWren, it is not required any change in the user’s code. This
means that the code is completely portable between the local-machine and the Cloud, so users can
decide where to run their PyWren workflows without requiring any modification. The life cycle of a
workflow using an external scheduler can be seen in Figure 12.

5 SLA Monitoring and Management
As described in D3.1[41], the SLA Manager serves the complete lifecycle of an SLA: Template-based
SLA agreement description, continuous monitoring, and notification of breaches. During this period
in the context of CloudButton, the use of the CloudButton-SLA has focused on enabling the con-
tinuous monitoring of Pywren functions execution by using the metrics provided by Knative and
Kubernetes at runtime. In this scenario, the collected data will be used to validate the software and

Page 27 of 45

H2020 825184 RIA
04/08/2020 CloudButton

to identify candidate performance improvements and I/O problems. As Pywren functions are the
basis of our Serverless Data Analytics Platform, by measuring them we will get a close view of the
performance of the system. Find below the figure 13 showing the architecture of the SLA Manager.

Figure 13: Architecture of SLA Manager.

The monitoring information is collected by an Adapter. The collected metrics should serve to
evaluate/validate the agreement in order to identify a breach in the SLA. The Evaluator test agree-
ment(s) accomplishment in runtime and informs the Notifier of any break so that the Observer can
take immediate action. The Evaluator obtains the active agreements from a Repository. Several agree-
ments can be active at the same time. In order to adapt our SLA Manager to CloudButton ecosystem
we need to answer several questions: What monitoring data do we have available? What are the
parameters that describe the QoS of CloudButton ecosystem? Can we define a SLA agreement(s)
to meet QoS out of this data? How can we make the QoS information available to CloudButton
components?

5.1 CloudButton QoS metrics selection

Find below figure 14 showing CloudButton High Level Architecture, from D3.1

Figure 14: Architecture of SLA Manager.

As shown in the figure 14, CloudButton-SLA sits on the CloudButton Core. A Service Level

Page 28 of 45

H2020 825184 RIA
04/08/2020 CloudButton

Agreement (SLA) allows to express requirements in terms of QoS. The parameters that describe the
QoS of CloudButton ecosystem will be obtained from the monitoring of the Backend FaaS, in this
context, Knative. As explained in D2.1[48], Knative [49] is a “Kubernetes-based platform to deploy and
manage modern serverless workloads” It make available the components needed to deploy, run and
manage serverless applications based on a Kubernetes cluster (between others). It provides a similar
functionality as AWS Lambda [50], Google Cloud Functions[51], or Azure Functions[52] on their
public clouds and it can also be used in conjunction with them, or on a private Kubernetes cluster.
Knative has two main components:

• Serving, that oversees the execution of serverless containers on k8s, leveraging the details of
revision tracking, autoscaling and networking.

• Eventing, that oversees the distribution of the events between sources and consumers. Istio is
customized to be used with Knative Eventing.

Knative also has an Observability plugin [53] to supervise the health of the pods running on Kna-
tive. It collects metrics, logs and traces on monitoring systems, like Prometheus/Grafana, Elas-
ticSearch/Kibana and Jaege/Zipkin, respectively. They all collect information from Knative Serv-
ing component, that is, the execution of containers inside Knative. Once installed, if we access
Prometheus, we have available a lot of metrics from different Prometheus targets (sources), but no
information is provided by Knative documentation or any other source about what do these met-
rics measure, other than the name of the measure, that not always is self-explaining. Nevertheless,

Figure 15: Some Prometheus target for Knative metrics.

some are interesting target to obtain information about the state of health of our Knative contain-
ers, like Kube-state-metrics, or Istio metrics, etc. This replies our first question: What monitoring data
do we have available?. But still no much information about how to stablish QoS metrics. Together
with Prometheus, Knative Observability plugin also installs several Grafana Dashboards, that put
together information related with Knative behaviour, and that can be used to monitor the health of
the system. The following dashboards are pre-installed with Knative Serving:

In order to produce some metrics to be displayed on the dashboards, we run a Metabolomics use
case[54] experiment on the testbed, from a Python Jupyter[55] notebook. More information about the
testbed can be found on Deliverable D2.3[56].

The pipeline makes use of Pywren to create a runtime (rutpal/pywren-knative-v37:170) that is
executed in Knative Serving, and thus, the metrics that we need are generated.

If we look more in deep to these dashboards, we can identify the Prometheus query used to obtain
then, and thus, the metric considered as candidate to QoS metric.

So, this will reply our second question: What are the parameters that describe the QoS of CloudButton
ecosystem? Quality of Service can be described as a combination of the metrics being used by the

Page 29 of 45

H2020 825184 RIA
04/08/2020 CloudButton

Figure 16: Grafana Dashboards created by Knative Observability Plugin.

Figure 17: Grafana Knative Dashboard to control Reconciliation.

Figure 18: Grafana Knative Dashboard to control Reconciliation.

Knative Observability plugin to control different aspects of the service, like CDR reconciliation, CPU
and Memory usages, control plane efficiency, etc

Page 30 of 45

H2020 825184 RIA
04/08/2020 CloudButton

Figure 19: Prometheus query to create Grafana Dashboard.

5.2 Prometheus CloudButton-SLA Monitor

In order to collect the data that is relevant to our QoS and thus, be able to assess SLA compliance,
we need to implement a Prometheus Monitor into our SLALite. Prometheus count with a REST API
[57] that will be used to obtain the metrics at a certain point in time or from a period. The output
with the metric values will be used to assess the different Agreements that are active in our SLA, and
to notify possible violations of the agreement, for the system to take actions. The queries/replies to
Prometheus metrics are in the form of:

The data section of the query result has one of the following formats:

{
"resultType": "matrix" | "vector" | "scalar" | "string",
"result": <value>

}

In the example, the metrics are the sum of the reconciler (i.e: revisions). Value contains the metric
itself (i.e: 1591950468.574) and the time in which it is measured (1591950468.574), in UNIX format.
You can find more information about “reconciler” in Kubernetes in here [58] The SLA is defined on
the following sample Agreement.

{
"id": "a4",
"name": "an-agreement-name",
"state": "started",
"details":{

"id": "a4",
"type": "agreement",
"name": "an-agreement-name",
"provider": { "id": "a-provider", "name": "A provider" },
"client": { "id": "a-client", "name": "A client" },
"creation": "2020-01-01T17:09:45Z",
"expiration": "2021-01-01T17:09:45Z",
"variables": [

{
"name": "Reconciler",
"metric": "sum by(reconciler)(60*rate(controller_reconcile_count[1m]))"

}
],
"guarantees": [

Page 31 of 45

H2020 825184 RIA
04/08/2020 CloudButton

Figure 20: Prometheus metric JSON output.

{
"name": "Reconciler Greater than 0",
"constraint": "reconciler > 0"

}
]

}
}

The Service Level Agreement can be made up by several Agreements that are assessed and notify
violations on an independent manner. Also, a Guarantee can be defined as a complex combination
of different metric to define Constraints. Finally, the Agreement is only assessed if it is on a started
State and between its Creation and Expiration dates. So this replies our third question, we can define a
SLA agreement(s) to meet QoS and assess it from the data provided by Knative Observability plugin?. Taking
this into account, we have coded a monitor that queries the metrics provided by Prometheus’ Knative
Observability plugin and assess its compliance, sending a violation in case any of the agreements is
not fulfilled.

Page 32 of 45

H2020 825184 RIA
04/08/2020 CloudButton

Here follow the logs of the CloudButton-SLA identifying a violation on our sample agreement
guarantee:

Figure 21: CloudButton-SLA identifies a violation of our sample SLA agreement.

5.3 RabbitMQ CloudButton-SLA Notifier

Now that we have a way to define a QoS SLA for CloudButton Core, and to identify violations of
agreements, we’ll like to take appropriated remediation actions to get back to “normal”. There will
be different components of CloudButton Core that would need to be aware of the breach of any of the
active SLA agreements. Notifications of guarantee violations will be produced into a message broker,
where can be easily consumed by other entities. RabbitMQ[59] is a message broker that implements
Advanced Message Queuing Protocol (AMQP). The new RabbitMQ CloudButton-SLA Notifier will
create a queue called CloudButton where violations will be notified. The information produced and
shared in the queue will be in the format:

{
"Application":"a4",
"Fields":{
"Guarantee":"Reconciler Greater than 0",
"IdAgreement":"a4",
"ViolationTime":"2020-06-12T13:34:17.824+02:00"
},
"Message":"QoS_Violation"
}

Here follow the message queued by the CloudButton-SLA on the RabbitMQ CloudButton queue
after identifying a violation on our sample agreement guarantee:

5.4 Future Actions

In order to make CloudButton-SLA component fully operative, we consider the following improve-
ments:

• Fully define an SLA to supervise CloudButton Core components and running processes. Each
of the applications might need to define its own guarantees. To accomplish this objective, we’ll
have to do a benchmarking of the system, supervising the metrics already identified to stablish
a mainline and notify above and below deviations.

• Consider adding dynamic information to the SLA definition, like number of pods, namespace
in which the application is running, etc. Also capability to modify the agreement dynamically

Page 33 of 45

H2020 825184 RIA
04/08/2020 CloudButton

Figure 22: AMQP Message from a Violation.

to adapt to changes in the workload, for example, or to define on-the-fly agreements for super-
vising specific situations.

• As we mentioned on D3.1[41], the existing baseline of metrics in Prometheus can be comple-
mented with specific exporters if necessary, i.e. in order to collect information for the status of
GPUs, for example.

6 Initial evaluation

6.1 EMBL use case

In our previous work [] we built initial prototype which enables metabolomics “Imaging mass spec-
trometry” application to be executed against serverless backend. Before that Imaging mass spec-
trometry application deployed over Apache Spark running in the dedicated cluster. Figure 23 shows
general application flow, where all the steps executed inside Apache Spark cluster

Figure 23: “Imaging mass spectrometry” flow

In our initial prototype D3.1[41] we modifed “Imaging mass spectrometry” application by replac-
ing calls to Apache Spark with the calls to the CloudButton toolkit. As a proof of concept we demon-
strated how our architecture enables to process small datasets and small databases by dynamically
obtain computational resources from the FaaS backend. We used IBM Cloud Object storage to store
the input datasets and databases and also for the generated output images.

Continuing our efforts beyond initial implementation we had to address the main objective and
challenges as follows

6.1.1 Enablement to process any size datasets and databases

Processing any size datasets and databases is one of the main challenges of the CloudButton Toolkit.
Our initial implementation in [] used small dataset with 1,477,568,961 records and a database with
2,412,804 molecules. While this worked fine, our objective was to ensure our architecture can process
any size datasets and databases. We decided to experiment with dataset with 91,266,700,713 records

Page 34 of 45

H2020 825184 RIA
04/08/2020 CloudButton

(we call it "Dataset5") and molecular database with 18,664,433 molecules (we call it "Database4"). This
combination is in particular importance as running such configuration was impossible over Apache
Spark deployed the cluster 4 VMs. Diving into these challenges, a preprocessing part is required. The
input dataset is rearranged into ordered memory bounded segments, the order is defined by m/z val-
ues (mass divided by charge number of ions) which considered as unique identifiers for molecules.
Because of the dataset isn’t memory bounded and could be too large to process, we need CloudButton
Toolkit to shuffle unordered memory bounded dataset chunks and then generate dataset segments
for each chunk separately. After that, CloudButton Toolkit collects the same segments from differ-
ent chunks independently and merges them into the desirable ordered memory bounded segments.
With this approach, we can divide the dataset quickly into separated segments by reading the whole
dataset only once. The entire flow can be seen in 24. The same distributed algorithm is applied over
a molecular database contains molecules formulas and their m/z values for annotation.

Figure 24: Dataset chunking algorithm

Using our unique approach allowed us to process any size datasets and any size databases.

6.1.2 Imaging mass spectrometry application with CloudButton

We present now details on the Metabolomics use case architecture which integrates general Cloud-
Button framework. Figure 25 contains high level flow with various steps and stages. We now explain
in details each step

6.1.3 Mol DB processing

Gets input molecular database contains base molecules formulas and applies serverless sorting algo-
rithm to produce sorted formulas chunks. Afterwards, each chunk is fitted with required molecular
details for the molecular search.

1. generate formulas Launches parallel IBM Cloud Fucntion serverless jobs which generate similar
formulas by each base one. Each serverless job downloads a molecular subset and applies config-

Page 35 of 45

H2020 825184 RIA
04/08/2020 CloudButton

Figure 25: Metabolomics and CloudButton architecture

urable adducts and modifiers for each formula. The adducts and modifiers appliance simulates the
chemical reactions that each base molecule can be transformed by, therefore the formulas generation
can embarrassedly scale. After the generation process, each job stores the resulted formulas into IBM
Cloud Object Storage objects and because of the fact that each job is done independently, there are a
lot of cases in which same formulas are generated by different jobs and thus duplications are saved
during the process. This behaviour enlarge significantly the total amount of formulas to process in
vain. For solving this issue, The decision of which formula goes into which object index is done by
hashing method that applied on each formula string. By this way, the process ensures that all same
formula strings are mapped into the same intermediate objects indices of each parallel job.

2. count unique formulas A preprocess stage that launches parallel IBM Cloud Function serverless
jobs according to the number of different intermediate storage objects indices from the previous stage
and calculates the number of unique formulas strings of each objects index. Each job downloads the
relevant intermediate objects for a specific index so it is guaranteed that all same formulas strings
were stored into the same objects index.

3. store formulas segments Launches parallel IBM Cloud Function serverless jobs according to the
number of different intermediate storage objects indices from the 1’st stage, manipulates each inter-
mediate object and store the final formulas chunks into new IBM Cloud Object Storage objects. Each
job downloads the relevant intermediate objects for a specific index, merges all formulas groups to-
gether and removes redundant formulas duplications. Again, it is guaranteed that all same formulas
strings were stored into the same objects index. After this process, the final sorted formulas chunks
are stored and the intermediate objects are cleaned.

4. calculate peaks chunk Launches parallel IBM Cloud Function serverless jobs according to the
number of formulas chunks that were produced by the previous stage and calculates its molecular
details. Each job downloads a specific formulas chunk and calculates molecular details for each
formula. The resulted details are attached with its relevant formulas ids and stored into new IBM
Cloud Object Storage objects. These details are the estimated input dataset values that indicates if
the corresponding formulas are included inside the dataset or not.

Page 36 of 45

H2020 825184 RIA
04/08/2020 CloudButton

5. formula to id lookup Launches parallel IBM Cloud Function serverless jobs according to the
maximum size of formulas chunks that can be fitted into a serverless job. Each job downloads a
group of formulas chunks and build a user friendly python dictionaries to convert formulas ids to
formulas strings and vice versa.

6.1.4 Dataset processing

Gets input binary dataset files that are stored in IBM Cloud Object Storage and parses the dataset into
memory bounded raw values chunks. The dataset input files are composed by a main compressed
binary ibd file that contains molecular details and positions, and by a metadata imzML file that
contains technical details for parsing the ibd file.

6. get imzml reader Launches a single IBM Cloud Function serverless job utilising IBM Cloud
network performance. The job downloads the imzML file and load it into a dedicated portable parser.
Afterwards, the parser is stored into an IBM Cloud Object Storage object.

7. upload chunk Launches parallel IBM Cloud Function serverless jobs according to the maximum
size that each serverless job can fit and process. Each job downloads the portable parser from the pre-
vious stage and parses an indexed memory bounded chunk of the ibd file. Afterwards, the resulted
chunks are stored into new IBM Cloud Object Storage objects.

6.1.5 Dataset partitioning

Gets unordered memory bounded dataset chunks and applies serverless sorting algorithm to pro-
duce sorted memory bounded dataset segments.

8. get segm bounds A preprocess stage that launches a single IBM Cloud Function serverless job
utilising IBM Cloud network performance and defines dynamically the number of required dataset
segments. The job downloads the portable parser and samples a minor subset of the dataset rows
to estimate the dataset distribution. Afterwards, the process calculates estimated ranges of molecu-
lar details such that all ranged molecular details will be equally sized. These ranges represent the
molecular details to be stored into each resulted dataset segment.

9. segment spectra Launches parallel IBM Cloud Function serverless jobs according to the number
of dataset chunks that were produced by the 7’th stage and divides each chunk into estimated seg-
ments according to the molecular details ranges that were produced by the previous stage. Each job
downloads an unordered memory bounded dataset chunk, sorts its values and divides it into sub-
segments. The number of sub-segments for each chunk is predefined such that the whole sorting
process will use the minimum required number of serverless jobs and storage requests. At the end
of each job, each sub-segment is stored into an intermediate IBM Cloud Object Storage object.

10. merge spectra segments Launches parallel IBM Cloud Function serverless jobs according to the
number of intermediate sub-segments from the previous stage and merges corresponding ranged
values. Each job downloads same index intermediate storage objects, merges and sorts its values and
stores the resulted segments into IBM Cloud Object Storage. Because of the fact that each indexed
intermediate storage objects are associated with a predefined range, the final result is an ordered
dataset segment regarding for the whole dataset. In addition, the process ensures in an estimated
way that each resulted segment is also memory bounded.

6.1.6 Mol DB partitioning

Gets unordered database chunks and applies serverless sorting algorithm to produce sorted database
segments.

11. clip centr df chunk Launches parallel IBM Cloud Function serverless jobs according to the num-
ber of database chunks that were produced by the 4’th stage and removes redundant molecular
formulas. Each job downloads a database chunk, clips its data regarding expected minimum and

Page 37 of 45

H2020 825184 RIA
04/08/2020 CloudButton

maximum dataset values and stores each resulted chunk into a new IBM Cloud Object Storage ob-
ject.

12. get first peak mz A preprocess part that launches parallel IBM Cloud Function serverless jobs
according to the number of database chunks that were produced by the 4’th stage and samples it
to estimate the data distribution. Afterwards, all samples are merged in the local machine and the
process calculates estimated ranges of molecular details such that all ranged molecular details will
be equally sized. These ranges represent the molecular details to be stored into each resulted dataset
segment.

13. segment centroids Launches parallel IBM Cloud Function serverless jobs according to the num-
ber of database chunks that were produced by the 4’th stage and generates estimated segments for
each chunk according to the molecular details ranges that were produced by the previous stage. Each
job downloads an unordered memory bounded database chunk, sorts its values and divides it into
sub-segments. The number of sub-segments for each chunk is predefined such that the whole sorting
process will use the minimum required number of serverless jobs and storage requests. At the end
of each job, each sub-segment is stored into an intermediate IBM Cloud Object Storage object.

14. merge centroid segments Launches parallel IBM Cloud Function serverless jobs according to
the number of intermediate sub-segments from the previous stage and merges corresponding ranged
values. Each job downloads same index intermediate storage objects, merges and sorts its values and
stores the resulted segments into IBM Cloud Object Storage. Because of the fact that each indexed
intermediate storage objects are associated with a predefined range, the final result is an ordered
dataset segment regarding for the whole dataset. In addition, at the end of he process, it decides
dynamically whether split again the resulted database segments or not, according to the total sum-
mary of the relevant ordered dataset segments sizes that will fit into next stages serverless jobs (using
dataset segments bounds that were produced by the 8’th stage).

6.1.7 Molecular search

15. annotate The main method that gets each database segment and searches its appearance and cor-
responding positions over the relevant dataset segments. The method launches parallel IBM Cloud
Function serverless jobs according to the number of database segments that were produced by the
previous stage. Each job downloads a database segment, downloads relevant dataset segments (ac-
cording to the database segments values range) and generates images representing the relative po-
sitions of each database formula over the input dataset. Due to previous sorting stages, Each job is
time and memory efficient because it can load only a memory bounded subset of the total dataset
segments for each given database segment. In addition, each job uses a dedicated image manager
that responsible for managing intermediate images results memory consumption during the process.
If the memory consumption of each job gets too close to its memory limit, the manager stores the re-
sulted data and flushes its pointers. by this way, the annotation processes utilise the balance between
memory and time serverless limitations.

16. build ranking Launches parallel IBM Cloud Function serverless jobs according to different com-
binations of configurable modifiers and adducts of each database formula and attaches FDR ranking
for each database formula. FDR, False Discovery Rate, is a measurement for expected false annota-
tions. The resulted rankings are stored into IBM Cloud Object Storage.

17. merge rankings Launches parallel IBM Cloud Function serverless jobs according to the number
of unique rankings that were produced by the previous stage and merges similar formulas ranking
data. The resulted data is stored in IBM Cloud Object Storage and the previous storage objects are
cleaned.

Summary Our core approach is decentralized and completely serverless, where we let the Cloud-
Button framework determine the appropriate scale of parallelism needed to process input datasets.

Page 38 of 45

H2020 825184 RIA
04/08/2020 CloudButton

To achieve this, our code evaluates the input datasets and then decides on the number of server-
less actions required, with the aim to maximize performance and the costs of the processing. This
approach allows us to dynamically adjust the amount of compute resources while the data is being
processed—which is in contrast to a Spark-based approach, where the amount of compute resources
is determined before starting the data processing and can’t be adjusted as the processing progresses.
As part of initial evaluation we choose combination of input dataset of 14.25GB size that contains
14,940,245,452 fields and molecular database of 0.22GB size with 2,412,804 molecules. We processed
given input over Apache Spark deployed over 4 EC2 machines of 32GB each and compared to pro-
cessing the same input with CloudButton Toolkit over IBM Cloud Functions and IBM Cloud Object
Storage. By using CloudButton Toolkit we processed given datasets 4 times faster over IBM Cloud
Functions comparing to serverfull approach based on Apache Spark. The CloudButton serverless
solution allowed us to process datasets which were previously out of reach, and without additional
efforts for infrastructure maintenance, Apache Spark cluster setup and configuration, and code de-
ployment.

6.2 Geospatial Use Case

The 3 experiments of the geospatial use case have completed their transition from single-machine
code to serverless functions. The prototypes use Jupyter notebooks with calls to the CloudButton
toolkit API. We use IBM Cloud Functions and IBM Cloud Storage as compute and storage backend,
respectively.

The transition to serverless has implied some changes to the previous single-machine approach.
For instance, large satellite images or LiDAR point clouds have to be partitioned due to the memory
restrictions of serverless functions. Some auxiliar libraries or frameworks have also been changed to
adapt to serverless limitations, for instance using scikit-learn instead of Spark standalone for machine
learning training. Other tools are third party libraries that require a lot of memory and cannot be
parallelized. In this cases, we opted for running the workflows with some serverless steps and some
sequential steps.

Current efforts are centered on running the experiments in the CloudButton testbed, with Knative
and Ceph backends. This will be possible thanks to the backend-agnostic design of the CloudButton
toolkit. We also are working in the development of benchmarks to evaluate the performance and cost
of the serverless implementations.

6.3 Cost-efficiency

As part of task T3.2, we aim to explore cost-effectiveness tradeoffs involved with applying serverless
computing model to Big Data analytics. In this context, in our recent vision paper entitled "Serverless
End Game: Disaggregation enabling transparency"[60] we present two experiments that analyze the
trade-offs between performance and cost when comparing serverless and local computing resources.

To evaluate the feasibility of compute disaggregation with state of the art cloud technologies, we
will compare a compute-intensive algorithm running in local threads in a VM compared to the same
algorithm running over serverless functions. We also provide code transparency, since we execute
the same code in both cases. To achieve this transparency, we rely on a Java Serverless Executor
[61] that can execute Java threads over remote Lambda functions. In this case, all state is passed as
parameters to the functions/threads, and functions are in warm state, like VMs which are already
provisioned.

This experiment runs a Monte Carlo simulation to estimate the value of π. At each iteration, the
algorithm checks if a random point in a 2D square space lies inside the inscribed quadrant. We run
48 billion iterations of the algorithm. For AWS Lambda, the iterations are evenly distributed to 16,
36, 48 or 96 functions with 1792 MB of memory.12 For virtual machines, we run a parallel version of
the simulation in different instance sizes: c5.4xlarge (16 vCPUs), c5.9xlarge (36 vCPUs), c5.12xlarge
(48 vCPUs), c5.24xlarge (96 vCPUs). The algorithm is implemented in Java.

As we can see in Figure 26, the major difference now is cost: for an equivalent execution, dis-
12According to AWS documentation, at 1,792MB a function has the equivalent of one full vCPU

Page 39 of 45

H2020 825184 RIA
04/08/2020 CloudButton

Figure 26: Monte Carlo simulation in VMs versus Amazon Lambda Functions

aggregated functions cost 2x more compared to on-demand VMs, and 6x more compared to Spot
instances. Surprisingly, computation time is equivalent in the local and remote version using Lamb-
das. Even considering all the network communication overheads, container management and remote
execution, the results for disaggregated computations are already competitive in performance in ex-
isting clouds. This is of course happening because this experiment is embarrassingly parallel, and
the duration of compute tasks is long enough to make milliseconds (15/100ms) overheads negligible.

The second experiment evaluates the feasibility and costs of both memory and compute disaggre-
gation with existing cloud technologies. In this case, we evaluate a linear algebra algorithm, Matrix
Multiplication (GEMM) which is a good use-case for testing parallel processing on large in-memory
data structures.

We rely on Python frameworks used by data scientists like NumPy and Dask. Dask transparently
enables to run the same code in a single multi-core machine or VM, and in a distributed cluster of
nodes. We also compare Dask to a serverless implementation of NumPy called numpywren [62]
using serverless functions that access data in disaggregated Cloud Object Storage (Amazon S3).

The first part of the experiment compares the performance of Matrix Multiplication (GEMM) us-
ing Dask in a local VM (1x r5.24xlarge) and in a distributed cluster (6x r5.4xlarge) using the same
resources (96 vCPUs, 768 GiB memory, 10Gb network). Figure 27a shows that the local version per-
form slightly better than the distributed one while costing the same. In this case, locality is avoiding
unnecessary data movements and serialization costs, and cluster provisioning. Experiments with
90Kx90K matrices can be executed in the local VM, but not in the equivalent distributed cluster due
to resource exhaustion.

The second part of the experiment compares the cost and performance of Matrix Multiplication
(GEMM) using Dask in a distributed cluster (on demand VMs or Spot instances) and using numpy-
wren over Amazon Lambda and Amazon S3. We calculate compute resources in numpywren (vC-
PUs) as the ratio between the sum of the duration of every Lambda and the wall-clock time of the
experiment. In GeMM (70Kx70K) numpywren uses 553.8 vCPUs and in Dask we use equivalent
resources: 552 vCPUs (5x c5.24xlarge, 1x c5.18xlarge).

Figure 27b shows that Dask obtains the same performance in VMs and Spot instances, but Spot
instances are 4x cheaper than on demand VMs. numpywren obtains good performance numbers for
large matrices, obtaining equivalent performance results for an equivalent Dask cluster in running
time. numpywren also shows automatic scaling for any size, whereas the Dask cluster must always
be provisioned in advance with the desired amount of resources. Finally, numpywren is much more
expensive than the Dask cluster using Spot instances (14x for 10K, 9x for 30K, 6.9x for 50K, 8.7x for

Page 40 of 45

H2020 825184 RIA
04/08/2020 CloudButton

(a) Comparing Vertical vs. Horizontal Scaling:
GEMM Matrix Multiplication in Dask Local vs. Dis-
tributed

(b) Comparing Horizontal Scaling Options: GEMM
Matrix Multiplication in Dask Distributed (Spot In-
stances and on demand VMs) and numpywren
(Lambda) for different matrix sizes

Figure 27: Performance of Matrix Multiplication

70K).
We see in these experiments what can be achieved today with existing state-of-the-art Cloud in-

frastructure. Monetary cost is now the strongest reason for locality in Cloud providers as we see
in the pricing models for Lambda, on demand VMs and Spot instances. But even if elastic disag-
gregated resources are now more expensive, some large scale compute intensive problems like linear
algebra are now already competitive in compute time and scalability. Further improvements in cloud
management control planes and locality-aware placement could reduce costs for elastic resources.

Page 41 of 45

H2020 825184 RIA
04/08/2020 CloudButton

References
[1] Infinispan, “Infinispan.” https://infinispan.org/.

[2] IBM, “IBM Cloud Functions.” https://www.ibm.com/cloud/functions.

[3] IBM, “IBM Cloud Object Storage.” https://www.ibm.com/cloud/object-storage.

[4] CloudButton Consortium, “CloudButton Toolkit implementation for IBM Cloud Functions and
IBM Cloud Object Storage.” https://github.com/pywren/pywren-ibm-cloud.

[5] SD Times, “Amazon Introduces Lambda, Containers at AWS re:Invent.” https://infinispan.
org/, 2014.

[6] AWS, “Amazon Step Functions.” https://aws.amazon.com/step-functions/.

[7] Microsft Azure, “What are Durable Functions?.” https://docs.microsoft.com/en-us/azure/
azure-functions/durable/durable-functions-overview.

[8] OpenWhisk, “Apache OpenWhisk Composer.” https://github.com/apache/
incubator-openwhisk-composer.

[9] A. Airflow, “Apache Airflow documentation.” http://airflow.apache.org/. Accessed on June
2019.

[10] Kubeflow, “Kubeflow: The Machine Learning Toolkit for Kubernetes.” https://www.kubeflow.
org/.

[11] Argo, “Argo Workflows & Pipelines: Container Native Workflow Engine for Kubernetes sup-
porting both DAG and step based workflows.” https://argoproj.github.io/argo/.

[12] Fission, “Fission WorkFlows.” https://github.com/fission/fission-workflows.

[13] “Apache OpenWhisk.” https://openwhisk.apache.org/.

[14] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht, “Occupy the cloud: Distributed com-
puting for the 99%,” in Proceedings of the 2017 Symposium on Cloud Computing, SoCC ’17,
p. 445–451, 2017.

[15] J. Italo, “Facial mapping (landmarks) with Dlib + Python.” https://towardsdatascience.com/
facial-mapping-landmarks-with-dlib-python-160abcf7d672.

[16] Denis Kennely, “Three Reasons most Companies are only 20 Percent to Cloud
Transformation.” https://www.ibm.com/blogs/cloud-computing/2019/03/05/
20-percent-cloud-transformation/.

[17] TechRepublic, “Rise of Multi-Cloud: 58% of businesses using combination
of AWS, Azure, or Google Cloud.” https://www.techrepublic.com/article/
rise-of-multicloud-58-of-businesses-using-combination-of-aws-azure-or-google-cloud/.

[18] N. Kratzke and P.-C. Quint, “Understanding cloud-native applications after 10 years of cloud
computing - a systematic mapping study,” Journal of Systems and Software, vol. 126, pp. 1 – 16,
2017.

[19] “Apache Mesos.” http://mesos.apache.org/.

[20] Docker, “Docker, Swarm Mode.” https://docs.docker.com/engine/swarm/.

[21] Kubernetes, “Kubernetes: Production-Grade Container Orchestration.” https://kubernetes.
io/.

Page 42 of 45

https://infinispan.org/
https://www.ibm.com/cloud/functions
https://www.ibm.com/cloud/object-storage
https://github.com/pywren/pywren-ibm-cloud
https://infinispan.org/
https://infinispan.org/
https://aws.amazon.com/step-functions/
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview
https://github.com/apache/incubator-openwhisk-composer
https://github.com/apache/incubator-openwhisk-composer
http://airflow.apache.org/
https://www.kubeflow.org/
https://www.kubeflow.org/
https://argoproj.github.io/argo/
https://github.com/fission/fission-workflows
https://openwhisk.apache.org/
https://towardsdatascience.com/facial-mapping-landmarks-with-dlib-python-160abcf7d672
https://towardsdatascience.com/facial-mapping-landmarks-with-dlib-python-160abcf7d672
https://www.ibm.com/blogs/cloud-computing/2019/03/05/20-percent-cloud-transformation/
https://www.ibm.com/blogs/cloud-computing/2019/03/05/20-percent-cloud-transformation/
https://www.techrepublic.com/article/rise-of-multicloud-58-of-businesses-using-combination-of-aws-azure-or-google-cloud/
https://www.techrepublic.com/article/rise-of-multicloud-58-of-businesses-using-combination-of-aws-azure-or-google-cloud/
http://mesos.apache.org/
https://docs.docker.com/engine/swarm/
https://kubernetes.io/
https://kubernetes.io/

H2020 825184 RIA
04/08/2020 CloudButton

[22] “Plasma Object Storage.”

[23] N. W. Paton and O. Díaz, “Active database systems,” ACM Computing Surveys (CSUR), vol. 31,
no. 1, pp. 63–103, 1999.

[24] C. Mitchell, R. Power, and J. Li, “Oolong: asynchronous distributed applications made easy,” in
Proceedings of the Asia-Pacific Workshop on Systems, p. 11, ACM, 2012.

[25] S. Han and S. Ratnasamy, “Large-scale computation not at the cost of expressiveness,” in
Presented as part of the 14th Workshop on Hot Topics in Operating Systems, 2013.

[26] A. Geppert and D. Tombros, “Event-based distributed workflow execution with eve,” in
Middleware’98, pp. 427–442, Springer, 1998.

[27] W. Chen, J. Wei, G. Wu, and X. Qiao, “Developing a concurrent service orchestration engine
based on event-driven architecture,” in OTM Confederated International Conferences" On the
Move to Meaningful Internet Systems", pp. 675–690, Springer, 2008.

[28] W. Binder, I. Constantinescu, and B. Faltings, “Decentralized orchestration of composite web
services,” in 2006 IEEE International Conference on Web Services (ICWS’06), pp. 869–876, IEEE,
2006.

[29] G. Li and H.-A. Jacobsen, “Composite subscriptions in content-based publish/subscribe sys-
tems,” in ACM/IFIP/USENIX International Conference on Distributed Systems Platforms and
Open Distributed Processing, pp. 249–269, Springer, 2005.

[30] D. Dai, Y. Chen, D. Kimpe, and R. Ross, “Trigger-based incremental data processing with unified
sync and async model,” IEEE Transactions on Cloud Computing, 2018.

[31] P. Soffer, A. Hinze, A. Koschmider, H. Ziekow, C. Di Ciccio, B. Koldehofe, O. Kopp, A. Jacobsen,
J. Sürmeli, and W. Song, “From event streams to process models and back: Challenges and
opportunities,” Information Systems, vol. 81, pp. 181–200, 2019.

[32] I. Baldini, P. Cheng, S. J. Fink, N. Mitchell, V. Muthusamy, R. Rabbah, P. Suter, and O. Tardieu,
“The serverless trilemma: Function composition for serverless computing,” in Proceedings
of the 2017 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software, Onward! 2017, pp. 89–103, 2017.

[33] B. Carver, J. Zhang, A. Wang, and Y. Cheng, “In search of a fast and efficient serverless dag
engine,” arXiv preprint arXiv:1910.05896, 2019.

[34] S. Joyner, M. MacCoss, C. Delimitrou, and H. Weatherspoon, “Ripple: A practical declarative
programming framework for serverless compute,” arXiv preprint arXiv:2001.00222, 2020.

[35] M. Malawski, A. Gajek, A. Zima, B. Balis, and K. Figiela, “Serverless execution of scientific
workflows: Experiments with HyperFlow, AWS Lambda and Google Cloud Functions,” Future
Generation Computer Systems, in press.

[36] A. Jangda, D. Pinckney, Y. Brun, and A. Guha, “Formal foundations of serverless computing,”
Proceedings of the ACM on Programming Languages, vol. 3, no. OOPSLA, pp. 1–26, 2019.

[37] E. Van Eyk, J. Grohmann, S. Eismann, A. Bauer, L. Versluis, L. Toader, N. Schmitt, N. Herbst,
C. Abad, and A. Iosup, “The spec-rg reference architecture for faas: From microservices and
containers to serverless platforms,” IEEE Internet Computing, 2019.

[38] S. Fouladi, F. Romero, D. Iter, Q. Li, S. Chatterjee, C. Kozyrakis, M. Zaharia, and K. Win-
stein, “From laptop to lambda: Outsourcing everyday jobs to thousands of transient functional
containers,” in 2019 USENIX Annual Technical Conference (USENIX ATC 19), (Renton, WA),
pp. 475–488, USENIX Association, July 2019.

Page 43 of 45

H2020 825184 RIA
04/08/2020 CloudButton

[39] P. G. López, M. Sánchez-Artigas, G. París, D. B. Pons, Á. R. Ollobarren, and D. A. Pinto, “Com-
parison of faas orchestration systems,” in 2018 IEEE/ACM International Conference on Utility
and Cloud Computing Companion (UCC Companion), pp. 148–153, IEEE, 2018.

[40] D. Barcelona-Pons, P. García-López, A. Ruiz, A. Gómez-Gómez, G. París, and M. Sánchez-
Artigas, “Faas orchestration of parallel workloads,” in Proceedings of the 5th International
Workshop on Serverless Computing, WOSC ’19, (New York, NY, USA), p. 25–30, Association
for Computing Machinery, 2019.

[41] CloudButton Consortium, “Deliverable D3.1: Initial specs of the Serverless Compute and Execu-
tion Engine.” https://cloudbutton.eu/docs/deliverables/CloudButton_D3.1_Public.pdf.

[42] Python, “Multiprocessing.” https://docs.python.org/3/library/multiprocessing.html.

[43] Python, “concurrent.futures.” https://docs.python.org/3/library/concurrent.futures.
html.

[44] Cloudbutton team, “Cloudbutton Toolkit.” https://github.com/cloudbutton.

[45] CloudButton Consortium, “Deliverable D5.2: CloudButton Prototype of Abstractions, Fault-
tolerance and Porting Tools.”

[46] P. G. López, M. S. Artigas, S. Shillaker, P. R. Pietzuch, D. Breitgand, G. Vernik, P. Sutra, T. Tar-
rant, and A. J. Ferrer, “Servermix: Tradeoffs and challenges of serverless data analytics,” CoRR,
vol. abs/1907.11465, 2019.

[47] P. G. Lopez, A. Arjona, J. Sampe, A. Slominski, and L. Villard, “Triggerflow: Trigger-based or-
chestration of serverless workflows,” in Proceedings of the 14th ACM International Conference
on Distributed and Event-based Systems, DEBS 2020, ACM, 2020.

[48] CloudButton Consortium, “Deliverable D2.1: Experiments and Initial Specifications.” https:
//cloudbutton.eu/docs/deliverables/CloudButton_D2.1_Public.pdf.

[49] “Knative:.” https://knative.dev/, 2020.

[50] “Amazon Lambda:.” https://aws.amazon.com/lambda/, 2020.

[51] “Google Cloud Functions:.” https://cloud.google.com/functions, 2020.

[52] “Azure Functions:.” https://azure.microsoft.com/en-us/services/functions/, 2020.

[53] “Knative Observability plugin:.” https://knative.dev/docs/install/any-kubernetes-
cluster/#installing-the-observability-plugin, 2020.

[54] “Metabolomics Usecase:.” https://github.com/metaspace2020/pywren-annotation-pipeline,
2020.

[55] “Jupiter Notebook:.” https://jupyter.org/, 2020.

[56] CloudButton Consortium, “Deliverable D2.3: CloudButton Architecture Specs and Early Proto-
types.” https://cloudbutton.eu/docs/deliverables/CloudButton_D2.3_Public.pdf.

[57] “Prometheus’ HTTP API:.” https://prometheus.io/docs/prometheus/latest/querying/api/,
2020.

[58] “ReconcilePackage:.” https://godoc.org/sigs.k8s.io/controller-runtime/pkg/reconcile, 2020.

[59] “RabbitMQ Message Broker:.” https://www.rabbitmq.com/, 2020.

Page 44 of 45

https://cloudbutton.eu/docs/deliverables/CloudButton_D3.1_Public.pdf
https://docs.python.org/3/library/multiprocessing.html
https://docs.python.org/3/library/concurrent.futures.html
https://docs.python.org/3/library/concurrent.futures.html
https://github.com/cloudbutton
https://cloudbutton.eu/docs/deliverables/CloudButton_D2.1_Public.pdf
https://cloudbutton.eu/docs/deliverables/CloudButton_D2.1_Public.pdf
https://cloudbutton.eu/docs/deliverables/CloudButton_D2.3_Public.pdf

H2020 825184 RIA
04/08/2020 CloudButton

[60] P. García-López, A. Slominski, S. Shillaker, M. Behrendt, and B. Metzler, “Serverless end game:
Disaggregation enabling transparency,” arXiv preprint arXiv:2006.01251, 2020.

[61] D. Barcelona-Pons, M. Sánchez-Artigas, G. París, P. Sutra, and P. García-López, “On the FaaS
track: Building stateful distributed applications with serverless architectures,” in Proceedings
of the 20th International Middleware Conference, pp. 41–54, 2019.

[62] V. Shankar, K. Krauth, Q. Pu, E. Jonas, S. Venkataraman, I. Stoica, B. Recht, and J. Ragan-Kelley,
“numpywren: serverless linear algebra,” 2018.

Page 45 of 45

	Executive summary
	Motivation and Background
	Serverless Computing Overview
	Beyond the Current Serverless Development Experience
	Hybrid Cloud
	Performance Acceleration
	Overall Objectives

	State of the Art
	Workflow orchestrates

	Design and Implementation
	CloudButton Toolkit general architecture and design
	Multiple APIs
	Executors
	Local executor
	Docker executor
	Apache OpenWhisk executor
	IBM Cloud Function executor
	Knative executor

	Temporary data
	CloudObject
	Sorting and shuffle
	Integration with Infinispan
	Serverless Workflows
	ArgoNotes
	Triggerflow

	SLA Monitoring and Management
	CloudButton QoS metrics selection
	Prometheus CloudButton-SLA Monitor
	RabbitMQ CloudButton-SLA Notifier
	Future Actions

	Initial evaluation
	EMBL use case
	Enablement to process any size datasets and databases
	Imaging mass spectrometry application with CloudButton
	Mol DB processing
	Dataset processing
	Dataset partitioning
	Mol DB partitioning
	Molecular search

	Geospatial Use Case
	Cost-efficiency

